Câu hỏi:

08/07/2022 232 Lưu

Góc tạo bởi giữa hai đường thẳng \[{d_1}\]: 7x - 3y + 6 = 0 và \[{d_2}\]: 2x - 5y có giá trị?

A. \[\frac{\pi }{4}\];              

                                           

B. \[\frac{\pi }{3}\];  

                  

C. \[\frac{{2\pi }}{3}\];

D. \[\frac{{3\pi }}{4}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có:

\(\left\{ \begin{array}{l}{d_1}:7x - 3y + 6 = 0 \Rightarrow {{\vec n}_1} = \left( {7; - 3} \right)\\{d_2}:2x - 5y - 4 = 0 \Rightarrow {{\vec n}_2} = \left( {2; - 5} \right)\end{array} \right.\) \({\vec n_1}\); \({\vec n_2}\) lần lượt là vectơ pháp tuyến của đường thẳng \({d_1}\); \({d_2}\). Áp dụng công thức góc giữa hai đường thẳng:

\(\cos \varphi = \frac{{\left| {14 + 15} \right|}}{{\sqrt {49 + 9} .\sqrt {4 + 25} }} = \frac{1}{{\sqrt 2 }}\)\( \Rightarrow \varphi = \frac{\pi }{4}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Trùng nhau.                        

B. Song song.

C. Vuông góc với nhau.            

D. Cắt nhau nhưng không vuông góc nhau.

Lời giải

Đáp án đúng là: B

Ta có: \[\left\{ \begin{array}{l}{d_1}:x - 2y + 1 = 0\\{d_2}: - 3x + 6y - 10 = 0\end{array} \right.\]

Giải hệ phương trình: \[\left\{ \begin{array}{l}x - 2y + 1 = 0\\ - 3x + 6y - 10 = 0\end{array} \right.\]\[ \Leftrightarrow \] \[\left\{ \begin{array}{l}3x - 6y + 3 = 0\\ - 3x + 6y - 10 = 0\end{array} \right.\]\[ \Leftrightarrow \]-7 = 0 (vô lý)

Suy ra hệ phương trình trên vô nghiệm

Vì vậy hai đường thẳng song song. 

Câu 2

A.   \[d:\left\{ \begin{array}{l}x = - 1\\y = 2\end{array} \right.\];

B. \[d:\left\{ \begin{array}{l}x = 2t\\y = t\end{array} \right.\];            

C. \[d:\left\{ \begin{array}{l}x = t\\y = - 2t\end{array} \right.\];         

D. \[d:\left\{ \begin{array}{l}x = - 2t\\y = t\end{array} \right.\].

Lời giải

Đáp án đúng là: C

Đường thẳng d cần tìm song song với đường thẳng – x + 2y + 3 = 0 nên có VTCP là: \[\overrightarrow u = \left( { - 1;2} \right)\].

Do đó phương trình tham số của đường thẳng d đi qua gốc tọa độ và nhận \[\overrightarrow u = \left( { - 1;2} \right)\] làm vectơ chỉ phương là: \[\left\{ \begin{array}{l}x = t\\y = - 2t\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right).\]

Câu 3

A.   Trùng nhau.                      

B. Song song.

C. Vuông góc với nhau.            

D. Cắt nhau nhưng không vuông góc nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{x^2} + {y^2} + 2x + 4y - 4 = 0;\]                      

B. \[{x^2} + {y^2} + 2x - 4y - 4 = 0;\]

C. \[{x^2} + {y^2} - 2x + 4y - 4 = 0;\]                       

D. \[{x^2} + {y^2} - 2x - 4y - 4 = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{d_1}:\left\{ \begin{array}{l}x = 3 + 2t\\y = t\end{array} \right.\];

B. \[{d_2}:\left\{ \begin{array}{l}x = - t\\y = - 2 + 3t\end{array} \right.\];   

C. \[{d_3}:\left\{ \begin{array}{l}x = 3 + t\\y = - 2t\end{array} \right.\];

D. \[{d_4}:\left\{ \begin{array}{l}x = 3t\\y = - 2\end{array} \right.\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x = - \frac{3}{4};\)         

B. \(x = \frac{3}{4};\)             

C.\(x = \frac{3}{2};\)             

D. \(x = - \frac{3}{8}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 2x – 5y + 4 = 0 ;                        

B. 3x – 5y + 10 = 0 ;

C. 5x – 2y – 10 = 0 ;                                                 

D. 2x – 5x + 10 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP