Câu hỏi:

19/08/2025 497 Lưu

Chứng minh rằng phương trình m(x - 1)3(x2 - 4) + x4 - 3 = 0 luôn có ít nhất hai nghiệm phân biệt với mọi giá trị m

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có:

+) f (x) = m(x - 1)3(x2 - 4) + x4 - 3 = 0 liên tục trên ℝ nên f (x) liên tục trên đoạn [-2; 1] (1)

Mặt khác:

+) f(–2) = m(–2 – 1)3 . [(–2)2 – 4] + (–2)4 – 3 = 13;

+) f(1) = m(1 – 1)3 . (12 – 4) + 14 – 3 = –2.

 Do đó f (-2).f (1) = 13.(-2) = - 26 < 0 (2)

Từ (1) và (2) nên f (x) = 0 cho ít nhất 1 nghiệm x thuộc [-2; 1] (*)

+) f (x) = m(x - 1)3(x2 - 4) + x4 - 3 = 0 liên tục trên ℝ nên f (x) liên tục trên đoạn [1; 2] (3)

Ta lại có:

+) f(2) = m.(2 – 1)3 . (22 – 4) + 24 – 3 = 13;

+) f(1) = m(1 – 1)3 . (12 – 4) + 14 – 3 = –2.

Do đó f (2).f (1) = 13.(-2) = - 26 < 0 (4)

Từ (3) và (4) nên f (x) = 0 cho ít nhất 1 nghiệm x thuộc [1; 2] (**)

Từ (*) và (**) nên suy ra f (x) = 0 cho ít nhất hai nghiệm phân biệt thuộc [-2; 2]

Vậy phương trình m(x - 1)3(x2 - 4) + x4 - 3 = 0 luôn có ít nhất hai nghiệm phân biệt với mọi giá trị m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

A. - 1

B. 20222021;

C. 0

D. -20222021;

Lời giải

Giá trị của lim 2020^n-2021^n+1/2021.2022^n  bằng (ảnh 1)

Câu 3

A. y = cot x;

B. y = sin x;
C. y = tan x;
D. y = cos x.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Nếu phương trình f (x) = 0 có nghiệm trong khoảng (a, b) thì hàm số f (x) phải liên tục trên khoảng (a, b);

B. Nếu hàm số f (x) liên tục trên đoạn [a, b] và f (a).f (b) > 0 thì phương trình f (x) = 0 không có nghiệm trong khoảng (a, b);
C. Nếu hàm số f (x) liên tục, tăng trên đoạn [a, b] và f (a).f (b) > 0 thì phương trình f (x) = 0 không thể có nghiệm trong khoảng (a, b);
D. Nếu f (a).f (b) < 0 thì phương trình f (x) = 0 có ít nhất một nghiệm trong khoảng (a, b).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hàm số liên tục trên (1; 3);

B. Hàm số liên tục trên ℝ;
C. Hàm số gián đoạn tại x = 2;
D. Hàm số gián đoạn tại x = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. a Î [1; 2);

B. a Î (-¥; 1);
C. a Î [2; +¥);
D. a Î [-1; 1).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP