Câu hỏi:
08/07/2022 2,155Cho tứ diện ABCD với đáy BCD là tam giác vuông cân tại C. Các điểm M, N, P, Q lần lượt là trung điểm của AB, AC, BC, CD. Góc giữa MN và PQ bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Vì M, N lần lượt là trung điểm của các cạnh AB, AC.
Nên MN là đường trung bình của tam giác ABC. Suy ra MN // BC.
Ta có MN // BC nên góc giữa MN và PQ là góc giữa BC và PQ.
Do đó góc giữa MN và PQ là .
Mà Q, P lần lượt là trung điểm của các cạnh CD, BC nên QP là đường trung bình của tam giác BCD.
Từ đó suy ra QP // BD nên góc (hai góc đồng vị và với tam giác
BCD vuông cân tại C).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình lập phương ABCD.A1B1C1D1. Góc giữa hai đường thẳng AC và DA1 bằng
Câu 3:
Cho hình chóp S.ABCD có đáy là hình vuông và SA vuông góc với đáy. Khẳng định nào sau đây đúng?
Câu 4:
Cho hình chóp S.ABC có SA ^ (ABC) và đáy là tam giác vuông tại A với AB = a, AC = 2a. Gọi a là góc giữa đường thẳng SA và mặt phẳng (SBC). Giá trị của tan a bằng
Câu 5:
Câu 6:
Cho tứ diện đều ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và BC. Tính số đo góc giữa hai đường thẳng MN và CD.
Câu 7:
về câu hỏi!