Câu hỏi:

09/07/2022 968 Lưu

Một hình chữ nhật nội tiếp trong nửa đường tròn bán kính R = 6, biết một cạnh của hình chữ nhật nằm dọc theo đường kính của đường tròn và hình chữ nhật đó nội tiếp. Tính diện tích lớn nhất của hình chữ nhật đó.
Một hình chữ nhật nội tiếp trong nửa đường tròn bán kính R = 6, biết một cạnh (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Một hình chữ nhật nội tiếp trong nửa đường tròn bán kính R = 6, biết một cạnh (ảnh 2)

Đặt tên các điểm như hình vẽ.

Đặt OA=xAD=2x. Áp dụng định lí Pytago ta có AB=OB2OA2=36x2.

Khi đó SABCD=AD.AB=2x.36x2.

Áp dụng BĐT Cô-si ta có: x36x2x2+36x22=18.

SABCD2.18=36.

Dấu “=” xảy ra khi và chỉ khi x2=36x2x2=18x=32.

Vậy diện tích lớn nhất của hình chữ nhật ABCD bằng 36 cm2.

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Cho hình chóp S.ABC có SA vuông góc (ABC) và đáy ABC là tam giác đều. Khẳng (ảnh 1)

Ta có: SAABCgtSASABSASACSABABCSACABC Đáp án A, D đúng.

ΔABC đều nên AHBC.

Ta có BCAHBCSABCSAHBCSH.

SBCABC=BCSHSBC,SHBCAHSBC,AHBCSBC;ABC=SH;AH=SHA Đáp án B đúng.

Chọn C.

Lời giải

Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh bằng 1 và (ảnh 1)

Ta có:

MN=MC'+C'D'+D'N

=2BC'+C'D'+DD'

=2BC+CC'+C'D'+CC'

=2BC+2CC'+C'D'+CC'

=2AD+2AA'AB+AA'

=2AD+3AA'AB

MN2=2AD+3AA'AB2

=4AD2+9AA'2+AB2+12AD.AA'4AD.AB6AA'.AB

=12+12AD.AA'4AD.AB6AA'.AB

Ta có:

AD.AA'=AD.AA'.cosDAA'=1.1.cos600=12

AD.AB=AD.AB.cosBAD=1.1.cos600=12

AA'.AB=AA'.AB.cosA'AB=1.1.cos600=12

MN2=14+12.124.126.12=15.

Vậy MN=15.

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP