Câu hỏi:

09/07/2022 773 Lưu

Cho các số thực a, b, x, y thỏa mãn a > 1, b > 1 a2x=b2y=ab. Giá trị nhỏ nhất của biểu thức P=6x+y2 bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Theo bài ra ta có:

a2x=b2y=ab

2x=logaab=12+12logab2y=logbab=12+12logba

x=14+14.1logbay=x=14+14.logba

 

Đặt t=logba, a>1,b>1t=logba>logb1=0 ta có: x=14+14.1ty=14+14.tt>0

Khi đó ta có:

P=6x+y2=614+14.1t+14+14t2

P=32+32.1t+116+18t+116t2

P=116t2+18t+32t+2516t>0

 

Ta có

P'=18t+1832t2=t3+t2128t2

P'=0t3+t212=0t=2tm

BBT:

Cho các số thực a, b, x, y thỏa mãn a > 1, b > 1 và a^2x = b^2y = căn bậc hai của ab (ảnh 1)

Vậy Pmin=P2=4516.

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Cho hình chóp S.ABC có SA vuông góc (ABC) và đáy ABC là tam giác đều. Khẳng (ảnh 1)

Ta có: SAABCgtSASABSASACSABABCSACABC Đáp án A, D đúng.

ΔABC đều nên AHBC.

Ta có BCAHBCSABCSAHBCSH.

SBCABC=BCSHSBC,SHBCAHSBC,AHBCSBC;ABC=SH;AH=SHA Đáp án B đúng.

Chọn C.

Lời giải

Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh bằng 1 và (ảnh 1)

Ta có:

MN=MC'+C'D'+D'N

=2BC'+C'D'+DD'

=2BC+CC'+C'D'+CC'

=2BC+2CC'+C'D'+CC'

=2AD+2AA'AB+AA'

=2AD+3AA'AB

MN2=2AD+3AA'AB2

=4AD2+9AA'2+AB2+12AD.AA'4AD.AB6AA'.AB

=12+12AD.AA'4AD.AB6AA'.AB

Ta có:

AD.AA'=AD.AA'.cosDAA'=1.1.cos600=12

AD.AB=AD.AB.cosBAD=1.1.cos600=12

AA'.AB=AA'.AB.cosA'AB=1.1.cos600=12

MN2=14+12.124.126.12=15.

Vậy MN=15.

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP