Câu hỏi:
13/07/2024 24,326Cho tam giác ABC, vuông tại A (AB < AC). Vẽ đường cao AH (H Î BC). Lấy điểm D sao cho H là trung điểm BD.
a) Chứng minh ∆ABC ∆HBA;
b) Qua C dựng đường thẳng vuông góc với tia AD, cắt AD tại E. Chứng minh AH.CD = CE.AD;
c) Chứng minh ∆HDE ∆ADC và BD.AC = 2AD.HE;
d) AH cắt CE tại F. Chứng minh AF2 = 2BF.AE.
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k).
Quảng cáo
Trả lời:
a) Xét ∆ABC và ∆HBA có:
(gt)
chung (gt)
Do đó ∆ABC ∆HBA (g.g);b) Xét ∆ADH và ∆CDE có:
= 90o (gt)
(hai góc đối đỉnh)
Do đó ∆ADH ∆CDE (g.g).
Suy ra (các cạnh tương ứng tỉ lệ)
Vậy: AH.CD = CE.AD (đccm)c) Ta có: ∆ADH ∆CDE (câu b)
Suy ra (các cạnh tương ứng tỉ lệ)
Xét ∆HDE và ∆ADC có:
(cmt)
(hai góc đối đỉnh)
Suy ra ∆HDE ∆ADC (c.g.c)
Suy ra (các cạnh tương ứng tỉ lệ)
Do đó HD.AC = AD.HE
Mặc khác H là trung điểm của BD (gt) ;
Suy ra: HD.AC = .AC = AD.HE
Vậy BD.AC = 2AD.HE.d) Vì AH vừa là đường cao vừa là trung tuyến của BD nên AH là trung trực của BD.
Suy ra ∆ADB cân tại A và AH là phân giác của hay .
Từ câu a: ∆ABC ∆HBA suy ra (hai góc tương ứng);
Từ câu b: ∆ADH ∆CDE suy ra (hai góc tương ứng).
Do đó hay CH là phân giác của .
Mặc khác HC vừa là đường cao của ∆ACF nên HC là trung trực của AF.
Hay BC là đường trung trực của đoạn thẳng AF.
Do đó BA = BF.
Suy ra ∆ABF cân tại B có .
Xét ∆BHF và ∆FEA có:
(cmt)
= 90o (gt)
Suy ra ∆BHF ∆FEA (g.g)
Suy ra (các cạnh tương ứng tỉ lệ).
Do đó BF.AE = HF.AF.
Vì H là trung trực AF nên .
Suy ra
Do đó AF2 = 2BF.AE (đpcm).
Đã bán 212
Đã bán 123
Đã bán 287
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho x = by + cz (1); y = ax + cz (2); z = ax + by (3) và x + y + z ≠ 0; xyz ≠ 0.
Chứng minh đẳng thức .Câu 3:
Câu 4:
Giải phương trình:
a) 7 + 2x = 32 – 3x;
b) ;
c) x2 + (x + 3)(x – 5) = 9;
d) .
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Đề kiểm tra Cuối kì 2 Toán 8 KNTT có đáp án (Đề 1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận