Câu hỏi:

13/07/2022 42,523

Cho tam giác ABC có AB = 5, A^=40°,B^=60°. Độ dài BC gần nhất với kết quả nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Xét tam giác ABC có A^=40°,B^=60°, ta có:

A^+B^+C^=180° (định lí tổng ba góc trong tam giác)

C^=180°A^B^ 

C^=180°40°60°=80°.

Theo định lí sin ta có: BCsinA=ABsinC

BC=AB.sinAsinC=5.sin40°sin80°3,3 

Vậy BC ≈ 3,3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Diện tích tam giác ABC là: S=12.AB.AC.sinAsinA=2SAB.AC

sinA=2.125.8=35A^36°52'  (vì góc A là góc nhọn)

Xét tam giác ABC có AB = 5, AC = 8 và A^36°52', áp dụng định lí côsin ta có:

BC2 = AB2 + AC2 – 2.AB.AC.cosA

BC2 ≈ 52 + 82 – 2.5.8.cos36°52' ≈ 25

Þ BC ≈ 5.

Vậy BC ≈ 5.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có CAB^=180°51°40'=128°20'

Xét tam giác ABC ta có: CAB^+ABC^+ACB^=180° (định lí tổng ba góc trong tam giác)

ACB^=180°CAB^ABC^ 

ACB^=180°128°20'45°39'=6°1'.

Áp dụng định lí sin trong tam giác ABC ta có: ACsinABC^=ABsinACB^

ACsin45°39'=10sin6°1' AC=10.sin45°39'sin6°1'

Xét tam giác ACH vuông tại H có: CH=AC.sinCAH^ 

CH=10.sin45°39'sin6°1'.sin51°40' ≈ 53,51 (m)

Chiều cao của cột cờ là khoảng: 1,5 + 53,51 = 55,01 (m)

Vậy cột cờ cao khoảng 55,01 m.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP