Câu hỏi:

24/07/2022 241 Lưu

Cho hình nón có đỉnh S và đáy là đường tròn \[\left( {O;R} \right)\]. Trên đường tròn \[\left( {O;R} \right)\] lấy hai điểm \[A,{\rm{ }}B\] sao cho tam giác \[OAB\] vuông. Biết diện tích tam giác SAB bằng \[{R^2}\sqrt 2 .\] Tính thể tích V của khối nón đã cho.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có \[OA = OB \Rightarrow OA \bot OB \Rightarrow AB = R\sqrt 2 \].

\[{S_{SAB}} = \frac{1}{2}AB\sqrt {S{A^2} - {{\left( {\frac{{AB}}{2}} \right)}^2}} = {R^2}\sqrt 2 \].

Cho hình nón có đỉnh S và đáy là đường tròn (O;R) (ảnh 1)

\[\begin{array}{l} \Rightarrow \frac{1}{2}.R\sqrt 2 = \sqrt {S{A^2} - {{\left( {\frac{{R\sqrt 2 }}{2}} \right)}^2}} = {R^2}\sqrt 2 \\ \Rightarrow S{A^2} - \frac{{{R^2}}}{2} = \left( {2{R^2}} \right) \Rightarrow SA = \frac{{3R}}{{\sqrt 2 }}\\ \Rightarrow h = SO = \sqrt {S{A^2} - {R^2}} = R\sqrt {\frac{7}{2}} \Rightarrow V = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\sqrt {\frac{7}{2}} \pi {R^3}.\end{array}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Thể tích của bể là \[V = 3ab = 72 \Rightarrow ab = 24\].

Để bể cá tốn ít nguyên liệu nhất thì tổng diện tích S của bốn mặt bên, mặt đáy, tấm kính ở giữa phải nhỏ nhất.

Ta có \[S = 2.3a + 2.3b + ab + 3a = ab + 9a + 6b \ge ab + 2\sqrt {9a.6b} = 24 + 2\sqrt {54.24} = 96\].

Dấu “=” xảy ra \[ \Leftrightarrow \left\{ \begin{array}{l}ab = 24\\9a = 6b > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = 6\end{array} \right.\].

Câu 2

Lời giải

Đáp án D

Tính thể tích của khối lập phương ABCD.A'B'C'D' biết AC' = 2a căn 3  (ảnh 1)

Ta có \[AC{'^2} = A{C^2} + CC{'^2} = A{B^2} + B{C^2} + CC{'^2} = 3A{B^2}\].

\[\begin{array}{l} \to AB\sqrt 3 = AC' = 2a\sqrt 3 \Rightarrow AB = 2a.\\ \Rightarrow {V_{ABCD.A'B'C'D'}} = A{B^3} = 8{a^3}.\end{array}\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP