Câu hỏi:

24/07/2022 405 Lưu

Cho phương trình \[\log _2^2x - m{\log _2}x + 2m - 4 = 0\] (m là tham số thực) có hai nghiệm thực phân biệt \[{x_1},{\rm{ }}{x_2}\] thỏa mãn \[{x_1} + {x_2} = 20.\] Mệnh đề nào dưới đây là đúng?

A. \[4 < m \le 6.\]       
B. \[m > 6.\]               
C. \[2 < m \le 4.\]       
D. \[0 < m \le 2.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Điều kiện \[x > 0\;\;\;\left( * \right)\]. Phương trình \[ \Leftrightarrow \left( {\log _2^2x - 4} \right) - m\left( {{{\log }_2}x - 2} \right) = 0\].

\[ \Leftrightarrow \left( {{{\log }_2}x - 2} \right)\left( {{{\log }_2}x + 2} \right) = m\left( {{{\log }_2}x - 2} \right) \Leftrightarrow \left[ \begin{array}{l}{\log _2}x = 2\\{\log _2}x + 2 = m\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = {2^{m - 2}}\end{array} \right.\].

\[ \Rightarrow {x_1} + {x_2} = 4 + {2^{m - 2}} = 20 \Rightarrow {2^{m - 2}} = 16 \Rightarrow m - 2 = 4 \Rightarrow m = 6\] thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Thể tích của bể là \[V = 3ab = 72 \Rightarrow ab = 24\].

Để bể cá tốn ít nguyên liệu nhất thì tổng diện tích S của bốn mặt bên, mặt đáy, tấm kính ở giữa phải nhỏ nhất.

Ta có \[S = 2.3a + 2.3b + ab + 3a = ab + 9a + 6b \ge ab + 2\sqrt {9a.6b} = 24 + 2\sqrt {54.24} = 96\].

Dấu “=” xảy ra \[ \Leftrightarrow \left\{ \begin{array}{l}ab = 24\\9a = 6b > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = 6\end{array} \right.\].

Câu 2

A. \[2{a^3}\sqrt 2 .\] 
B. \[3{a^3}\sqrt 3 .\]   
C. \[{a^3}.\]              
D. \[8{a^3}.\]

Lời giải

Đáp án D

Tính thể tích của khối lập phương ABCD.A'B'C'D' biết AC' = 2a căn 3  (ảnh 1)

Ta có \[AC{'^2} = A{C^2} + CC{'^2} = A{B^2} + B{C^2} + CC{'^2} = 3A{B^2}\].

\[\begin{array}{l} \to AB\sqrt 3 = AC' = 2a\sqrt 3 \Rightarrow AB = 2a.\\ \Rightarrow {V_{ABCD.A'B'C'D'}} = A{B^3} = 8{a^3}.\end{array}\]

Câu 3

A. \[\frac{{a\sqrt 3 }}{4}.\]                         
B. \[\frac{{a\sqrt 2 }}{2}.\]    
C. \[\frac{{a\sqrt 3 }}{2}.\]                     
D. \[\frac{a}{2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\left( {1;2} \right).\]                              
B. \[\left( { - \infty ;1} \right).\]        
C. \[\left( {1; + \infty } \right).\]   
D. \[\left( { - \infty ;5} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[ - 5\cos 5x + C.\] 
B. \[5\cos 5x + C.\]     
C. \[ - \frac{1}{5}\cos 5x + C.\]       
D. \[\frac{1}{5}\cos 5x + C.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\vec n = \left( {1; - 2;3} \right).\]           
B. \[\vec n = \left( {1;2; - 3} \right).\]         
C. \[\vec n = \left( { - 1;2; - 3} \right).\]               
D. \[\vec n = \left( {1;2;3} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP