Cho hàm số f(x). Hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ và \[f\left( 0 \right) + f\left( 1 \right) - 2f\left( 2 \right) = f\left( 4 \right) - f\left( 3 \right)\].
Mệnh đề nào dưới đây là đúng?

Quảng cáo
Trả lời:
Đáp án C
Ta có \[\left\{ \begin{array}{l}x \in \left( {0;4} \right)\\f'\left( x \right) = 0\end{array} \right. \Leftrightarrow x = 2\]. Ta cần so sánh \[f\left( 0 \right),f\left( 4 \right),f\left( 2 \right)\]. Nên loại được D.
Hàm số \[f\left( x \right)\] đồng biến trên \[\left( {0;2} \right) \Rightarrow f\left( 2 \right) > f\left( 0 \right) \Rightarrow \] Loại B.
Từ \[f\left( 0 \right) + f\left( 1 \right) - 2f\left( 2 \right) = f\left( 4 \right) - f\left( 3 \right) \Rightarrow f\left( 4 \right) - f\left( 0 \right) = f\left( 1 \right) + f\left( 3 \right) - 2f\left( 2 \right)\].
Hàm số \[f\left( x \right)\] đồng biến trên \[\left( {0;2} \right) \Rightarrow f\left( 2 \right) > f\left( 1 \right)\].
Hàm số \[f\left( x \right)\] nghịch biến trên \[\left( {2;4} \right) \Rightarrow f\left( 2 \right) > f\left( 3 \right)\].
\[ \Rightarrow 2f\left( 2 \right) > f\left( 1 \right) + f\left( 3 \right) \Rightarrow f\left( 4 \right) - f\left( 0 \right) < 0 \Rightarrow f\left( 4 \right) < f\left( 0 \right)\].
Vậy \[\mathop {\min }\limits_{\left[ {0;4} \right]} f\left( x \right) = f\left( 4 \right)\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Thể tích của bể là \[V = 3ab = 72 \Rightarrow ab = 24\].
Để bể cá tốn ít nguyên liệu nhất thì tổng diện tích S của bốn mặt bên, mặt đáy, tấm kính ở giữa phải nhỏ nhất.
Ta có \[S = 2.3a + 2.3b + ab + 3a = ab + 9a + 6b \ge ab + 2\sqrt {9a.6b} = 24 + 2\sqrt {54.24} = 96\].
Dấu “=” xảy ra \[ \Leftrightarrow \left\{ \begin{array}{l}ab = 24\\9a = 6b > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = 6\end{array} \right.\].
Lời giải
Đáp án D

Ta có \[AC{'^2} = A{C^2} + CC{'^2} = A{B^2} + B{C^2} + CC{'^2} = 3A{B^2}\].
\[\begin{array}{l} \to AB\sqrt 3 = AC' = 2a\sqrt 3 \Rightarrow AB = 2a.\\ \Rightarrow {V_{ABCD.A'B'C'D'}} = A{B^3} = 8{a^3}.\end{array}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.