Câu hỏi:

24/07/2022 242 Lưu

Cho hàm số f(x) có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số \[y = f\left[ {f\left( x \right)} \right]\].

Cho hàm số f(x) có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số (ảnh 1)

A. 5.                       
B. 3.                       
C. 4.                       
D. 6.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Cách 1:

Xét \[f'\left( x \right) = ax\left( {x - 2} \right) \Rightarrow f\left( x \right) = a\left( {\frac{{{x^3}}}{3} - {x^2}} \right) + b\].

\[\begin{array}{l}\left\{ \begin{array}{l}f\left( 0 \right) = 0\\f\left( 2 \right) = - 4\end{array} \right. \Rightarrow \left\{ \begin{array}{l}b = 0\\ - \frac{4}{3}a = - 4\end{array} \right. \Rightarrow \left\{ \begin{array}{l}b = 0\\a = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}f'\left( x \right) = 3x\left( {x - 2} \right)\\f\left( x \right) = {x^3} - 3{x^2}\\y = f\left( {{x^3} - 3{x^2}} \right)\end{array} \right.\\y' = \left( {3{x^2} - 6x} \right).f'\left( {{x^3} - 3{x^2}} \right) = 3x\left( {x - 2} \right).3\left( {{x^3} - 3{x^2}} \right)\left( {{x^3} - 3{x^2} - 2} \right) = 9{x^3}\left( {x - 2} \right)\left( {x - 3} \right)\left( {{x^3} - 3{x^2} - 2} \right)\end{array}\]

Ta có \[{x^3} - 3{x^2} - 2 = 0 \Leftrightarrow f\left( x \right) = 2 \Rightarrow y' = 0\] có 1 nghiệm đơn \[x = {x_0}\] khác \[x = 0;x = 2;x = 3\].

Như vậy tổng số nghiệm đơn và nghiệm bội lẻ của \[y' = 0\] là 4. Chọn C.

Cách 2:

Ta có \[y' = f'\left( x \right).f'\left[ {f\left( x \right)} \right] = 0 \Leftrightarrow \left[ \begin{array}{l}f'\left( x \right) = 0\\f'\left[ {f\left( x \right)} \right] = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\\f\left( x \right) = 0\\f\left( x \right) = 2\end{array} \right.\].

Phương trình \[f\left( x \right) = 0\] có 1 nghiệm kép \[x = 0\] và 1 nghiệm đơn \[x = a\;\left( {a > 2} \right)\].

Phương trình \[f\left( x \right) = 2\] có 1 nghiệm đơn \[x = b\;\left( {b > a} \right)\].

Như vậy \[y' = 0\] có tất cả 4 nghiệm đơn (nghiệm bội lẻ) là \[x = 0;x = 2;x = a;x = b\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Thể tích của bể là \[V = 3ab = 72 \Rightarrow ab = 24\].

Để bể cá tốn ít nguyên liệu nhất thì tổng diện tích S của bốn mặt bên, mặt đáy, tấm kính ở giữa phải nhỏ nhất.

Ta có \[S = 2.3a + 2.3b + ab + 3a = ab + 9a + 6b \ge ab + 2\sqrt {9a.6b} = 24 + 2\sqrt {54.24} = 96\].

Dấu “=” xảy ra \[ \Leftrightarrow \left\{ \begin{array}{l}ab = 24\\9a = 6b > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = 6\end{array} \right.\].

Câu 2

A. \[2{a^3}\sqrt 2 .\] 
B. \[3{a^3}\sqrt 3 .\]   
C. \[{a^3}.\]              
D. \[8{a^3}.\]

Lời giải

Đáp án D

Tính thể tích của khối lập phương ABCD.A'B'C'D' biết AC' = 2a căn 3  (ảnh 1)

Ta có \[AC{'^2} = A{C^2} + CC{'^2} = A{B^2} + B{C^2} + CC{'^2} = 3A{B^2}\].

\[\begin{array}{l} \to AB\sqrt 3 = AC' = 2a\sqrt 3 \Rightarrow AB = 2a.\\ \Rightarrow {V_{ABCD.A'B'C'D'}} = A{B^3} = 8{a^3}.\end{array}\]

Câu 3

A. \[\frac{{a\sqrt 3 }}{4}.\]                         
B. \[\frac{{a\sqrt 2 }}{2}.\]    
C. \[\frac{{a\sqrt 3 }}{2}.\]                     
D. \[\frac{a}{2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\left( {1;2} \right).\]                              
B. \[\left( { - \infty ;1} \right).\]        
C. \[\left( {1; + \infty } \right).\]   
D. \[\left( { - \infty ;5} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[ - 5\cos 5x + C.\] 
B. \[5\cos 5x + C.\]     
C. \[ - \frac{1}{5}\cos 5x + C.\]       
D. \[\frac{1}{5}\cos 5x + C.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\vec n = \left( {1; - 2;3} \right).\]           
B. \[\vec n = \left( {1;2; - 3} \right).\]         
C. \[\vec n = \left( { - 1;2; - 3} \right).\]               
D. \[\vec n = \left( {1;2;3} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP