Câu hỏi:

13/07/2024 888

Cho tam giác ABC cân tại A có đường cao AH (H thuộc BC). Gọi M là trung điểm của đoạn thẳng AB. Gọi E là điểm đối xứng với H qua M.

Gọi N là trung điểm của AH. Chứng minh N là trung điểm của EC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

Chứng minh AEHC là hình bình hành sau đó suy ra hai đường chéo AH, EC giao nhau tại trung điểm N của mỗi đường.

Cách giải:

Media VietJack

AHBE là hình chữ nhật (theo câu a)

AE // BH;AE=BH 1

ABC  cân tại A

AH là đường cao

 AH đồng thời là đường trung tuyến (tính chất tam giác cân) HB=HC 2

Từ (1) và (2) AE=HC;AE // HC AEHC là hình bình hành (dấu hiệu nhận biết)

 Hai đường chéo AHEC cắt nhau tại trung điểm của mỗi đường.

N là trung điểm AH (gt)

 N là trung điểm của EC (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp:

Sử dụng hằng đẳng thức  sau đó rút gọn vế trái đưa về dạng tìm x thường gặp.

Cách giải:

x+32x2=45

x2+6x+9x2=456x=36x=6

Vậy x=6 .

Lời giải

Phương pháp:

Đặt nhân tử chung rồi tách hạng tử để nhóm các hạng tử thích hợp.

Cách giải:

x37x2+10x

=xx27x+10=xx22x5x+10=xxx25x2=xx5x2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP