Câu hỏi:

12/07/2024 842

Cho tam giác ABC cân tại A có đường cao AH (H thuộc BC). Gọi M là trung điểm của đoạn thẳng AB. Gọi E là điểm đối xứng với H qua M.

Cho AH=8 cm; BC=12 cm . Tính diện tích tam giác AMH.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

Tính diện tích tam giác ABH , chứng minh  từ đó ta tính được

Cách giải:

Media VietJack

Ta có HB=HC=BC2=6 cm

Tam giác ABH vuông tại H nên SABH=12.AH.HB=12.8.6=24 cm2

Tam giác HAB và tam giác HMA có cùng chiều cao hạ từ đỉnh H và cạnh đáy AB gấp hai lần cạnh đáy MA nên SABH=2SAMH

Suy ra SAMH=12SABH=12.24=12 cm2

Vậy SAMH=12 cm2

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm x biết:x+32x2=45

Xem đáp án » 13/07/2024 5,228

Câu 2:

Phân tích đa thức thành nhân tử:x37x2+10x

Xem đáp án » 13/07/2024 2,546

Câu 3:

Cho a+b+c=0  a0; b0; c0 . Tính giá trị của biểu thức A=a2a2b2c2+b2b2c2a2+c2c2a2b2

Xem đáp án » 13/07/2024 2,215

Câu 4:

Cho tam giác ABC cân tại A có đường cao AH (H thuộc BC). Gọi M là trung điểm của đoạn thẳng AB. Gọi E là điểm đối xứng với H qua M

Chứng minh tứ giác AHBE là hình chữ nhật.

Xem đáp án » 13/07/2024 2,007

Câu 5:

Cho tam giác ABC cân tại A có đường cao AH (H thuộc BC). Gọi M là trung điểm của đoạn thẳng AB. Gọi E là điểm đối xứng với H qua M.

Trên tia đối của tia HA lấy điểm F. Kẻ HKFC  (K thuộc FC). Gọi I, Q lần lượt là trung điểm của HK, KC. Chứng minh rằng: BKFI .

Xem đáp án » 11/07/2024 1,294

Câu 6:

Cho hai biểu thức: A=x293x+5  B=xx+3+2xx33x2+9x29  với x5; x±3.

Cho P= A.B. Tìm giá trị nguyên của x để P có giá trị nguyên.

Xem đáp án » 13/07/2024 732

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store