Câu hỏi:

13/07/2024 1,431

Trong giờ học nhóm, ba bạn An, Bình, Chi lần lượt phát biểu như sau:

- An: "Số 0 là số nguyên và không phải là số hữu tỉ."

- Bình: "Số hữu tỉ là số viết được dưới dạng phân số  với a, b Î ℤ."

- Chi: "Mỗi số nguyên là một số hữu tỉ."

Theo em, bạn nào phát biểu đúng, bạn nào phát biểu sai? Vì sao?

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

- An phát biểu sai do 0 viết được dưới dạng phân số \(\frac{0}{1}\) nên 0 là số hữu tỉ.

- Bình phát biểu sai do số hữu tỉ là số viết được dưới dạng phân số \(\frac{a}{b}\) với a, b Î ℤ, b ≠ 0.

- Chi phát biểu đúng do mỗi số nguyên a viết được dưới dạng phân số \(\frac{a}{1}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Sắp xếp các số sau theo thứ tự giảm dần:

\(\frac{2}{{15}};\,\,\frac{2}{3};\,\, - \frac{7}{8};\,\,\frac{5}{6};\,\,\frac{{ - 7}}{9}\);

Xem đáp án » 13/07/2024 3,914

Câu 2:

So sánh:
\(3\frac{2}{{11}}\) và 3,2;

Xem đáp án » 13/07/2024 2,580

Câu 3:

Sắp xếp các số sau theo thứ tự tăng dần:
\(3\frac{2}{{11}};\,\,2\frac{1}{{12}};\,\,\frac{{15}}{{21}};\,\,\frac{{17}}{{21}}\);

Xem đáp án » 13/07/2024 2,282

Câu 4:

\[\frac{{19}}{{22}};\,\,0,5;\,\, - \frac{1}{4};\,\, - 0,05;\,\,2\frac{1}{6}\].

Xem đáp án » 13/07/2024 1,840

Câu 5:

Cho số hữu tỉ \[y = \frac{{2a - 4}}{3}\] (a là số nguyên). Với giá trị nào của a thì:
y là số nguyên?

Xem đáp án » 13/07/2024 1,505

Câu 6:

Các số 0,5; 11; 3,111 \(4\frac{5}{7}\); −34; −1,3; \(\frac{{ - 1}}{{ - 3}};\,\,\frac{{ - 9}}{8}\) có là số hữu tỉ không? Vì sao?

Xem đáp án » 13/07/2024 1,450

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store