Câu hỏi:
13/07/2024 1,833
Trong giờ học nhóm, ba bạn An, Bình, Chi lần lượt phát biểu như sau:
- An: "Số 0 là số nguyên và không phải là số hữu tỉ."
- Bình: "Số hữu tỉ là số viết được dưới dạng phân số với a, b Î ℤ."
- Chi: "Mỗi số nguyên là một số hữu tỉ."
Theo em, bạn nào phát biểu đúng, bạn nào phát biểu sai? Vì sao?
Trong giờ học nhóm, ba bạn An, Bình, Chi lần lượt phát biểu như sau:
- An: "Số 0 là số nguyên và không phải là số hữu tỉ."
- Bình: "Số hữu tỉ là số viết được dưới dạng phân số với a, b Î ℤ."
- Chi: "Mỗi số nguyên là một số hữu tỉ."
Theo em, bạn nào phát biểu đúng, bạn nào phát biểu sai? Vì sao?
Quảng cáo
Trả lời:
Lời giải:
- An phát biểu sai do 0 viết được dưới dạng phân số \(\frac{0}{1}\) nên 0 là số hữu tỉ.
- Bình phát biểu sai do số hữu tỉ là số viết được dưới dạng phân số \(\frac{a}{b}\) với a, b Î ℤ, b ≠ 0.
- Chi phát biểu đúng do mỗi số nguyên a viết được dưới dạng phân số \(\frac{a}{1}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
∙ Nhóm các phân số dương: \(\frac{2}{{15}};\,\,\frac{2}{3};\,\,\frac{5}{6}\).
Ta có: \(\frac{2}{{15}} = \frac{4}{{30}};\,\,\frac{2}{3} = \frac{{20}}{{30}};\,\,\frac{5}{6} = \frac{{25}}{{30}}\).
Vì 25 > 20 > 4 nên \(\frac{{25}}{{30}} > \frac{{20}}{{30}} > \frac{4}{{30}}\).
Suy ra \(\frac{5}{6} > \frac{2}{3} > \frac{2}{{15}}\).
∙ Nhóm các phân số âm: \( - \frac{7}{8};\,\,\frac{{ - 7}}{9}\).
Ta có: \( - \frac{7}{8} = \frac{{ - 63}}{{72}};\,\,\frac{{ - 7}}{9} = \frac{{ - 56}}{{72}}\).
Vì −56 > −63 nên \(\frac{{ - 56}}{{72}} > \frac{{ - 63}}{{72}}\) hay \(\frac{{ - 7}}{9} > - \frac{7}{8}\).
Do đó \(\frac{5}{6} > \frac{2}{3} > \frac{2}{{15}} > \frac{{ - 7}}{9} > - \frac{7}{8}\).
Vậy các số được sắp xếp theo thứ tự giảm dần: \(\frac{5}{6};\,\,\frac{2}{3};\,\,\frac{2}{{15}};\,\,\frac{{ - 7}}{9};\,\, - \frac{7}{8}\).
Lời giải
Lời giải:
Ta có \(3\frac{2}{{11}} > 1;\,\,2\frac{1}{{12}} > 1\); \(\frac{{15}}{{21}} < 1;\,\,\frac{{17}}{{21}} < 1\).
∙ Nhóm các số lớn hơn 1: \(3\frac{2}{{11}};\,\,2\frac{1}{{12}}\).
Ta thấy hai hỗn số \(3\frac{2}{{11}};\,\,2\frac{1}{{12}}\) có phần nguyên 2 < 3 nên \(2\frac{1}{{12}} < 3\frac{2}{{11}}\).
∙ Nhóm các số nhỏ hơn 1: \(\frac{{15}}{{21}};\,\,\frac{{17}}{{21}}\).
Vì 15 < 17 nên \(\frac{{15}}{{21}} < \frac{{17}}{{21}}\).
Do đó \(\frac{{15}}{{21}} < \frac{{17}}{{21}} < 2\frac{1}{{12}} < 3\frac{2}{{11}}\).
Vậy các số sau theo thứ tự tăng dần là \(\frac{{15}}{{21}};\,\,\frac{{17}}{{21}};\,\,2\frac{1}{{12}};\,\,3\frac{2}{{11}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.