Câu hỏi:

13/07/2024 2,967 Lưu

Cho 100 số thực, trong đó tích của ba số bất kì là một số âm. Chứng tỏ rằng tích của 100 số thực đó là một số dương.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Do trong 100 số thực đã cho thì tích của ba số bất kì là một số âm nên trong 100 số thực đó có ít nhất một số âm.

Ta gọi số âm đó là a.

Tách riêng số a, chia 99 số còn lại thành 33 nhóm, mỗi nhóm gồm 3 số.

Khi đó, tích của mỗi nhóm là một số âm.

Suy ra tích của 99 số trong 33 nhóm cũng là một số âm.

Do đó, tích của của số âm a và 99 số còn lại là một số dương.

Vậy tích của 100 số thực đã cho là một số dương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Nhận xét: Với các số thực a, b, c, d, nếu a ≥ b, c ≥ d thì a + c ≥ b + d.

Ta có: |x – 2| ≥ 0 với mọi số thực x nên A = 10 . |x – 2| + 22 ≥ 22 với mọi số thực x.

Vậy giá trị nhỏ nhất của A là 22.

Dấu "=" xảy ra khi và chỉ khi |x – 2| = 0. Suy ra x – 2 = 0 hay x = 2.

Câu 2

Lời giải

Lời giải:

Do |x + 2,037| = 0 nên x + 2,037 = 0.

Suy ra x = − 2,037.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP