Câu hỏi:

28/07/2022 2,918

Cho các số a, b, c thỏa mãn \(\frac{a}{{2\,\,020}} = \frac{b}{{2\,\,021}} = \frac{c}{{2\,\,022}}\). Chứng tỏ rằng:

4(a – b)(b – c) = (c – a)2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{{2\,\,020}} = \frac{b}{{2\,\,021}} = \frac{c}{{2\,\,022}}\)

\( = \frac{{a - b}}{{2\,\,020 - 2\,\,021}} = \frac{{b - c}}{{2\,\,021 - 2\,\,022}} = \frac{{c - a}}{{2\,\,022 - 2\,\,020}}\)

Suy ra \(\frac{{a - b}}{{ - 1}} = \frac{{b - c}}{{ - 1}} = \frac{{c - a}}{2}\) hay c – a = –2(a – b) = –2(b – c).

Do đó (c – a)2 = [–2(a – b)][–2(b – c)] = 4(a – b)(b – c).

Vậy 4(a – b)(b – c) = (c – a)2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

\[\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}\] và x – 2y + 3z = 14.

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\[\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4} = \frac{{(x - 1) - 2(y - 2) + 3(z - 3)}}{{2 - 2\,\,.\,\,3 + 3\,\,.\,\,4}}\]

\[ = \frac{{x - 2y + 3z - 6}}{8} = \frac{{14 - 6}}{8} = 1\].

Do đó x – 1 = 1 . 2 = 2; y – 2 = 1 . 3 = 3; z – 3 = 1 . 4 = 4.

Vậy x = 3; y = 5; z = 7.

Lời giải

Lời giải:

Ta có 2x = 3y; 5y = 7z hay \(\frac{x}{3} = \frac{y}{2};\,\,\frac{y}{7} = \frac{z}{5}\).

Suy ra: \(\frac{x}{{21}} = \frac{y}{{14}} = \frac{z}{{10}}\).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{{21}} = \frac{y}{{14}} = \frac{z}{{10}} = \frac{{3x - 7y + 5z}}{{3\,\,.\,\,21 - 7\,\,.\,\,14 + 5\,\,.\,\,10}} = \frac{{30}}{{15}} = 2\).

Do đó x = 2 . 21 = 42; y = 2 . 14 = 28; z = 2 . 10 = 20.

Vậy x = 42; y = 28; z = 20.