Câu hỏi:

10/08/2022 4,282

Cho hàm số y = 2x2. Khẳng định nào sau đây là đúng ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: D.

Xét hàm số y = 2x2 có tập xác định D = ℝ

Cho x1, x2 tùy ý thuộc D sao cho x1 > x2 ta có:

f(x1) – f(x2) = 2x1­2 – 2x22 = 2(x1­2 – x22) = 2(x1 – x2)(x1 + x2)

Ta có: x1 > x2 nên x1 – x2 > 0

Khi x1, x2 thuộc khoảng (0; +∞) thì x1 + x2 > 0 nên f(x1) – f(x2) > 0 hay f(x1) > f(x2). Do đó, hàm số đồng biến trên khoảng (0; +∞).

Khi x1, x2 thuộc khoảng (–∞; 0) thì x1 + x2 < 0 nên f(x1) – f(x2) < 0 hay f(x1) < f(x2). Do đó, hàm số nghịch biến trên khoảng (–∞; 0).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Xét hàm số y = x2 trên khoảng (–∞; 0).

Lấy x1, x2 tùy ý sao cho x1 < x2, ta có: f(x1) – f(x2) = x12 – x22 = (x1 – x2)(x1 + x2)

Do x1 < x2  nên x1 – x2 < 0 và do x1, x2 thuộc (–∞; 0) nên x1 + x2 < 0.

Từ đó suy ra: f(x1) – f(x2) > 0 hay f(x1) > f(x2)

Do đó, khi x1 < x2   thì f(x1) > f(x2)

Vậy hàm số nghịch biến (giảm) trên khoảng (–∞; 0).

Câu 2

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C.

Xét khoảng (0; 1) ta thấy đồ thị hàm số có dạng đi xuống từ trái sang phải, do đó, hàm số nghịch biến trên khoảng (0; 1).

Xét khoảng (1; 3), đồ thị hàm số vừa đi lên vừa đi xuống nên ta không xét tính đơn điệu trên khoảng này.

Xét khoảng (3; +∞), đồ thị hàm số đi lên từ trái qua phải nên hàm số đồng biến trên khoảng (3; +∞).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP