Câu hỏi:
08/08/2022 14,311Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: D.
Cầu rời mặt vợt ở độ cao 0,7 m so với mặt đất và vận tốc ban đầu của cầu là 12 m/s (bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng thẳng đứng).
Chọn hệ trục tọa độ Oxy
Với g = 9,8 m/s2, góc phát cầu α = 30°, vận tốc ban đầu v0 = 12 m/s, phương trình quỹ đạo của cầu là:
\(y = \frac{{ - 9,8.{x^2}}}{{{{2.12}^2}.co{s^2}{{30}^o}}} + \tan {30^o}.x + 0,7 = - \frac{{49}}{{1080}}{x^2} + \frac{{\sqrt 3 }}{3}x + 0,7\)(với x ≥ 0)\(\)
Khi x = 4, ta có \(y = - \frac{{49}}{{1080}}{.4^2} + \frac{{\sqrt 3 }}{3}.4 + 0,7 \approx 2,283\)> 1,524
Như vậy, cầu đã vượt qua lưới. Điểm rơi của cầu là giao điểm của parabol và trục hoành nên giải phương trình:
\( - \frac{{49}}{{1080}}{x^2} + \frac{{\sqrt 3 }}{3}x + 0,7 = 0\) ta được: x1 ≈ 13,84 và x2 ≈ –1,11
Giá trị nghiệm dương cho ta khoảng cách từ vị trí người chơi cầu lông đến vị trí cầu rơi chạm đất là 13,84 m.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B.
Gọi A và B là hai điểm ứng với hai chân cổng như hình vẽ.
Vì cổng hình parabol có phương trình \(y = - \frac{1}{2}{x^2}\) và cổng có chiều rộng d = 5 m nên:
AB = 5 và hoành độ của A và B lần lượt là \( - \frac{5}{2},\,\,\frac{5}{2}\).
Ta có: \(y = - \frac{1}{2}.{\left( {\frac{5}{2}} \right)^2} = - \frac{1}{2}.{\left( { - \frac{5}{2}} \right)^2} = \frac{{ - 25}}{8}\)
Do đó, \(A\left( {\frac{{ - 5}}{2};\frac{{ - 25}}{8}} \right)\) và \(B\left( {\frac{5}{2};\frac{{ - 25}}{8}} \right)\).
Chiều cao của cổng chính là giá trị tuyệt đối tung độ của A và B hay h = \(\left| {\frac{{ - 25}}{8}} \right| = \frac{{25}}{8} = 3,125\) (m).
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Chọn hệ trục tọa độ Oxy như hình, A ≡ O.
Parabol (P) có phương trình dạng: y = ax2 + bx + c (a ≠ 0).
Parabol đi qua điểm A(0; 0), B(162; 0), M(10; 43) nên ta có:
\(\left\{ \begin{array}{l}c = 0\\{162^2}a + 162b + c = 0\\{10^2}a + 10b + c = 43\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 0\\a = \frac{{ - 43}}{{1520}}\\b = \frac{{3483}}{{760}}\end{array} \right.\)
Do đó, phương trình của (P) là: \(y = - \frac{{43}}{{1520}}{x^2} + \frac{{3483}}{{760}}x\)
Do đó, chiều cao của cổng là tung độ của đỉnh parabol và là:
\(h = - \frac{\Delta }{{4a}} = - \frac{{{b^2} - 4ac}}{{4a}} = - \frac{{{{\left( {\frac{{3483}}{{760}}} \right)}^2} - 4.\left( {\frac{{ - 43}}{{1520}}} \right).0}}{{4.\left( {\frac{{ - 43}}{{1520}}} \right)}} \approx 185,6\) (m).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Không gian mẫu và biến cố có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận