Câu hỏi:

09/08/2022 338

Cho ∆ABC có \[\widehat A = 100^\circ \]\[\widehat B = \widehat C\]. Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM = AN. Khẳng định nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho tam giác ABC có góc A = 100 độ và bóc B = góc C (ảnh 1)

Vì AM = AN nên ∆AMN cân tại A.

Suy ra \[\widehat {AMN} = \widehat {ANM}\].

Do đó đáp án D sai.

Xét ∆AMN, có: \[\widehat {MAN} + \widehat {AMN} + \widehat {ANM} = 180^\circ \].

Suy ra \[2\widehat {AMN} = 180^\circ - \widehat {MAN} = 180^\circ - 100^\circ = 80^\circ \].

Do đó \[\widehat {AMN} = 40^\circ \].

Xét ∆ABC, có: \[\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \].

Suy ra \[2\widehat {ABC} = 180^\circ - \widehat {BAC} = 180^\circ - 100^\circ = 80^\circ \].

Do đó \[\widehat {ABC} = 40^\circ \].

Ta suy ra \[\widehat {AMN} = \widehat {ABC} = 40^\circ \].

Mà hai góc này ở vị trí đồng vị.

Suy ra MN // BC.

Do đó đáp án A đúng.

Vì ba điểm A, B, C tạo thành một tam giác và MN // BC.

Nên MN không song song với AB và MN không song song với AC.

Do đó đáp án B, C sai.

Vậy ta chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Cho tam giác ABC cân tại A có góc A = 36 độ. Tia phân giác (ảnh 1)

Vì ∆ABC cân tại A nên \[\widehat {ABC} = \widehat {ACB}\].

∆ABC có: \[\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \].

Suy ra \[2\widehat {ABC} = 180^\circ - \widehat {BAC} = 180^\circ - 36^\circ = 144^\circ \].

Do đó \[\widehat {BCA} = \widehat {ABC} = 72^\circ \].

Vì BD là phân giác của \[\widehat {ABC}\].

Nên \[\widehat {ABD} = \widehat {DBC} = \frac{{72^\circ }}{2} = 36^\circ \].

Ta có \[\widehat {ABD} = \widehat {BAD} = 36^\circ \].

Nên ∆ABD cân tại D.

Suy ra DA = DB (1).

Do đó đáp án A đúng.

∆ABD cân tại D: \[\widehat {ADB} = 180^\circ - \widehat {ABD} - \widehat {BAD} = 180^\circ - 36^\circ - 36^\circ = 108^\circ \].

Ta có \[\widehat {ADB} + \widehat {BDC} = 180^\circ \] (hai góc kề bù).

Suy ra \[\widehat {BDC} = 180^\circ - \widehat {ADB} = 180^\circ - 108^\circ = 72^\circ \].

Ta có \[\widehat {BDC} = \widehat {BCD} = 72^\circ \].

Suy ra ∆BCD cân tại B.

Do đó BD = BC (2).

Do đó đáp án D sai.

Từ (1), (2), ta suy ra DA = DB = BC.

Do đó đáp án B, C đúng.

Vậy ta chọn đáp án D.

Lời giải

Đáp án đúng là: C

Cho tam giác ABC cân tại A có góc A < 90 độ. Kẻ BD vuông góc AC (ảnh 1)

Vì ∆ABC cân tại A nên AB = AC.

Mà AE = AD (giả thiết).

Do đó AB – AE = AC – AD.

Suy ra EB = DC.

Xét ∆CBE và ∆BCD, có:

BC là cạnh chung.

EB = DC (chứng minh trên).

\[\widehat {EBC} = \widehat {DCB}\] (∆ABC cân tại A).

Do đó ∆CBE = ∆BCD (cạnh – góc – cạnh).

Suy ra \[\widehat {CEB} = \widehat {BDC} = 90^\circ \] (cặp góc tương ứng).

Khi đó ta có CE BE hay CE AB.

Do đó đáp án C đúng.

Vì A, B, C tạo thành một tam giác và CE AB.

Nên CE không vuông góc với BC và CE không vuông góc với AC.

Do đó đáp án B, D sai.

∆ADE có AE = AD.

Suy ra ∆ADE cân tại A.

Do đó \[\widehat {AED} = \widehat {ADE}\].

∆ADE có: \[\widehat {BAC} + \widehat {AED} + \widehat {ADE} = 180^\circ \].

Suy ra \[2\widehat {AED} = 180^\circ - \widehat {BAC}\]    (1).

∆ABC có: \[\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \].

Suy ra \[2\widehat {ABC} = 180^\circ - \widehat {BAC}\] (2).

Từ (1), (2), ta suy ra \[\widehat {AED} = \widehat {ABC}\].

Mà hai góc này ở vị trí đồng vị.

Do đó DE // BC.

Suy ra đáp án A sai.

Vậy ta chọn đáp án C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP