Câu hỏi:
09/08/2022 605
Cho ∆ABC cân tại A, đường phân giác trong của \[\widehat A\] cắt BC tại D. Khẳng định nào dưới đây sai?
Cho ∆ABC cân tại A, đường phân giác trong của \[\widehat A\] cắt BC tại D. Khẳng định nào dưới đây sai?
Quảng cáo
Trả lời:
Đáp án đúng là: D

Xét ∆ABD và ∆ACD, có:
AD là cạnh chung.
\[\widehat {BAD} = \widehat {CAD}\] (AD là phân giác của \[\widehat {BAC}\]).
AB = AC (∆ABC cân tại A).
Do đó ∆ABD = ∆ACD (cạnh – góc – cạnh).
Suy ra đáp án C đúng.
Ta có ∆ABD = ∆ACD (chứng minh trên).
Suy ra BD = CD và \[\widehat {ADB} = \widehat {ADC}\] (cặp cạnh và cặp góc tương ứng).
Vì BD = CD nên D là trung điểm BC (1).
Ta có \[\widehat {ADB} + \widehat {ADC} = 180^\circ \] (hai góc kề bù).
Suy ra \[2\widehat {ADC} = 180^\circ \].
Do đó \[\widehat {ADB} = \widehat {ADC} = 90^\circ \].
Suy ra AD ⊥ BC (2).
Từ (1), (2), ta suy ra AD là đường trung trực của BC.
Do đó đáp án A đúng.
∆ABD vuông tại D: \[\widehat {ABD} + \widehat {BAD} = 90^\circ \].
Suy ra \[\widehat {ABC} + \widehat {CAD} = 90^\circ \] (Vì AD là phân giác của \[\widehat {BAC}\] nên \[\widehat {BAD} = \widehat {CAD}\]).
Do đó đáp án B đúng.
∆ABD vuông tại D: \[\widehat {ABD} + \widehat {BAD} = 90^\circ \].
Suy ra \[\widehat {ABC} < 90^\circ \].
Mà \[\widehat {ADC} = 90^\circ \] (theo (2)).
Do đó \[\widehat {ABC} + \widehat {ADC} < 90^\circ + 90^\circ = 180^\circ \].
Khi đó ta có \[\widehat {ABC} + \widehat {ADC} < 180^\circ \].
Do đó đáp án D sai.
Vậy ta chọn đáp án D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Một đường thẳng là đường trung trực của một đoạn thẳng khi thỏa mãn cả hai yếu tố sau:
+ Đi qua trung điểm của đoạn thẳng.
+ Vuông góc với đoạn thẳng tại trung điểm của đoạn thẳng đó.
- Đường thẳng d ở đáp án A có đi qua trung điểm I của đoạn thẳng AB và vuông góc với đoạn thẳng MN tại trung điểm I.
Do đó đường thẳng d ở đáp án A là đường trung trực của đoạn thẳng MN.
- Đường thẳng d ở đáp án B, D có đi qua trung điểm I nhưng không vuông góc với đoạn thẳng MN tại trung điểm I.
Do đó đường thẳng d ở đáp án B, D không là đường trung trực của đoạn thẳng MN.
- Đường thẳng d ở đáp án C không đi qua trung điểm của đoạn thẳng MN.
Do đó đường thẳng d ở đáp án C không là đường trung trực của đoạn thẳng MN.
Vậy ta chọn đáp án A.
Lời giải
Đáp án đúng là: C

Xét ∆ABD và ∆AED, có:
AD là cạnh chung.
\[\widehat {BAD} = \widehat {EAD}\] (AD là phân giác của \[\widehat {BAC}\]).
AB = AE (giả thiết).
Do đó ∆ABD = ∆AED (cạnh – góc – cạnh).
Suy ra BD = ED.
Mà AB = AE (giả thiết).
Do đó AD là đường trung trực của đoạn thẳng BE.
Vì AD là đường trung trực của đoạn thẳng BE nên AD vừa vuông góc với BE, vừa đi qua trung điểm của đoạn thẳng BE.
Do đó đáp án C đúng nhất.
Với E ∈ AC, ta có AB = AE (giả thiết) và AB < AC (giả thiết).
Do đó AE < AC.
Suy ra ba điểm B, E, C không thẳng hàng.
Mà AD vuông góc với BE.
Nên AD không vuông góc với BC.
Do đó đáp án A sai.
Vậy ta chọn đáp án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.