Câu hỏi:

09/08/2022 605

Cho ∆ABC cân tại A, đường phân giác trong của \[\widehat A\] cắt BC tại D. Khẳng định nào dưới đây sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tam giác ABC cân tại A, đường phân giác trong của  (ảnh 1)

Xét ∆ABD và ∆ACD, có:

AD là cạnh chung.

\[\widehat {BAD} = \widehat {CAD}\] (AD là phân giác của \[\widehat {BAC}\]).

AB = AC (∆ABC cân tại A).

Do đó ∆ABD = ∆ACD (cạnh – góc – cạnh).

Suy ra đáp án C đúng.

Ta có ∆ABD = ∆ACD (chứng minh trên).

Suy ra BD = CD và \[\widehat {ADB} = \widehat {ADC}\] (cặp cạnh và cặp góc tương ứng).

Vì BD = CD nên D là trung điểm BC (1).

Ta có \[\widehat {ADB} + \widehat {ADC} = 180^\circ \] (hai góc kề bù).

Suy ra \[2\widehat {ADC} = 180^\circ \].

Do đó \[\widehat {ADB} = \widehat {ADC} = 90^\circ \].

Suy ra AD BC (2).

Từ (1), (2), ta suy ra AD là đường trung trực của BC.

Do đó đáp án A đúng.

∆ABD vuông tại D: \[\widehat {ABD} + \widehat {BAD} = 90^\circ \].

Suy ra \[\widehat {ABC} + \widehat {CAD} = 90^\circ \] (Vì AD là phân giác của \[\widehat {BAC}\] nên \[\widehat {BAD} = \widehat {CAD}\]).

Do đó đáp án B đúng.

∆ABD vuông tại D: \[\widehat {ABD} + \widehat {BAD} = 90^\circ \].

Suy ra \[\widehat {ABC} < 90^\circ \].

\[\widehat {ADC} = 90^\circ \] (theo (2)).

Do đó \[\widehat {ABC} + \widehat {ADC} < 90^\circ + 90^\circ = 180^\circ \].

Khi đó ta có \[\widehat {ABC} + \widehat {ADC} < 180^\circ \].

Do đó đáp án D sai.

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Một đường thẳng là đường trung trực của một đoạn thẳng khi thỏa mãn cả hai yếu tố sau:

+ Đi qua trung điểm của đoạn thẳng.

+ Vuông góc với đoạn thẳng tại trung điểm của đoạn thẳng đó.

- Đường thẳng d ở đáp án A có đi qua trung điểm I của đoạn thẳng AB và vuông góc với đoạn thẳng MN tại trung điểm I.

Do đó đường thẳng d ở đáp án A là đường trung trực của đoạn thẳng MN.

- Đường thẳng d ở đáp án B, D có đi qua trung điểm I nhưng không vuông góc với đoạn thẳng MN tại trung điểm I.

Do đó đường thẳng d ở đáp án B, D không là đường trung trực của đoạn thẳng MN.

- Đường thẳng d ở đáp án C không đi qua trung điểm của đoạn thẳng MN.

Do đó đường thẳng d ở đáp án C không là đường trung trực của đoạn thẳng MN.

Vậy ta chọn đáp án A.

Câu 2

Lời giải

Đáp án đúng là: C

Cho tam giác ABC có AB < AC, đường phân giác AD. Trên cạnh AC (ảnh 1)

Xét ∆ABD và ∆AED, có:

AD là cạnh chung.

\[\widehat {BAD} = \widehat {EAD}\] (AD là phân giác của \[\widehat {BAC}\]).

AB = AE (giả thiết).

Do đó ∆ABD = ∆AED (cạnh – góc – cạnh).

Suy ra BD = ED.

Mà AB = AE (giả thiết).

Do đó AD là đường trung trực của đoạn thẳng BE.

Vì AD là đường trung trực của đoạn thẳng BE nên AD vừa vuông góc với BE, vừa đi qua trung điểm của đoạn thẳng BE.

Do đó đáp án C đúng nhất.

Với E AC, ta có AB = AE (giả thiết) và AB < AC (giả thiết).

Do đó AE < AC.

Suy ra ba điểm B, E, C không thẳng hàng.

Mà AD vuông góc với BE.

Nên AD không vuông góc với BC.

Do đó đáp án A sai.

Vậy ta chọn đáp án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP