Câu hỏi:
13/07/2024 2,327Chứng minh rằng với mọi góc x ( 0° ≤ x ≤ 90°), ta đều có:
sinx = \(\sqrt {1 - {{\cos }^2}{\rm{x}}} \);Quảng cáo
Trả lời:
Lời giải
Ta có: \[{\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{x}}\,{\rm{ + }}\,{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{x = 1}}\].
⇒ sin2x = 1 – cos2x
⇒ sinx = \(\sqrt {1 - {{\cos }^2}{\rm{x}}} \) hoặc sinx = \( - \sqrt {1 - {{\cos }^2}{\rm{x}}} \)
Vì 0° ≤ x ≤ 90° nên 0 ≤ sinx ≤ 1. Do đó chỉ có sinx = \(\sqrt {1 - {{\cos }^2}{\rm{x}}} \) là thỏa mãn.
Vậy sinx = \(\sqrt {1 - {{\cos }^2}{\rm{x}}} \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 100
Đã bán 321
Đã bán 218
Đã bán 1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho góc x với cosx = \(\frac{{ - 1}}{2}\). Tính giá trị biểu thức
S = 4sin2x + 8tan2x.
Câu 3:
Chứng minh rằng với mọi góc x ( 0° ≤ x ≤ 90°), ta đều có:
tan2x = \(\frac{{{{\sin }^2}{\rm{x}}}}{{{{\cos }^2}{\rm{x}}}}\) ( x ≠ 90°);Câu 4:
Tìm góc α ( 0° ≤ α ≤ 180° ) trong mỗi trường hợp sau:
cos α = \[ - \frac{{\sqrt 3 }}{2}\];10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận