Câu hỏi:
18/08/2022 259
Phương trình: \[\sqrt {{x^2} + x + 4} + \sqrt {{x^2} + x + 1} = \sqrt {2{x^2} + 2x + 9} \] có tích các nghiệm là:
Phương trình: \[\sqrt {{x^2} + x + 4} + \sqrt {{x^2} + x + 1} = \sqrt {2{x^2} + 2x + 9} \] có tích các nghiệm là:
Quảng cáo
Trả lời:
Đáp án đúng là: A
Điều kiện x \( \in \) ℝ, đặt t = x2 + x + 1; t > 0
Phương trình đã cho trở thành \[\sqrt {t + 3} + \sqrt t = \sqrt {2t + 7} \]
\( \Leftrightarrow \) 2t + 3 + 2\(\sqrt {t(t + 3)} \) = 2t + 7
\[ \Leftrightarrow \sqrt {t\left( {t + 3} \right)} = 2\]
\( \Leftrightarrow \) t(t + 3) = 4\[ \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 4\end{array} \right.\]
Kết hợp điều kiện ta có t = 1 thoả mãn
Với t = 1 ta có phương trình x2 + x + 1 = 1\[ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\end{array} \right.\]
Vậy tích các nghiệm của phương trình là: 0.(–1) = 0
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Bình phương hai vế của phương trình ta có
x2 – 4x – 12 = (x – 4)2
\( \Rightarrow \) x2 – 4x – 12 = x2 – 8x + 16
\( \Rightarrow \) 4x = 28
\( \Rightarrow \) x = 7
Thay nghiệm trên vào phương trình đã cho, ta thấy x = 7 thoả mãn
Vậy phương trình có nghiệm x = 7
Lời giải
Đáp án đúng là: A
Bình phương hai vế của phương trình ta có
2x2 – 2x + 4 = x2 – x + 2
\( \Rightarrow \) x2 – x + 2 = 0
Phương trình có ∆ = (– 1)2 – 4.1.2 = – 7 < 0
Suy ra phương trình vô nghiệm
Vậy số nghiệm của phương trình là 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.