Câu hỏi:

13/07/2024 4,271

Cho các số thực dương a, b, c. Chứng minh rằng:

aba+b+2c+bcb+c+2a+cac+a+2b14(a+b+c)

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta chứng minh bất đẳng thức 1x+y141x+1y với x, y > 0.

Thậy vậy, với x, y > 0 thì:

1x+y141x+1y1x+yx+y4xy(x+y)24xyx2+2xy+y24xy0

x22xy+y20(xy)20 (luôn đúng)

Do đó: 1x+y141x+1y với x, y > 0.

Áp dụng bất đẳng thức trên ta có:

1a+b+2c=1(a+c)+(b+c)14(1a+c+1b+c)aba+b+2cab41a+c+1b+c

Tương tự ta có: bcb+c+2abc41b+a+1c+acac+a+2bca41c+b+1a+b

Cộng vế với vế các bất đẳng thức với nhau ta được:

aba+b+2c+bcb+c+2a+cac+a+2bab41a+c+1b+c+bc41b+a+1c+a+ca41c+b+1a+b

=14aba+c+abb+c+bcb+a+bcc+a+cac+b+caa+b=14ab+bca+c+ab+cac+b+bc+cab+a=14b(a+c)a+c+a(b+c)c+b+c(b+a)b+a=14(a+b+c)

Do đó VT14VP (đpcm).

Dấu “=” xảy ra khi a = b = c.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho các số thực dương x, y, z thỏa mãn: x2+y2+z2=3xyz

Tìm giá trị lớn nhất của biểu thức P=x2x4+yz+y2y4+xz+z2z4+xy

Xem đáp án » 13/07/2024 5,137

Câu 2:

Cho biểu thức P=a4+b4ab với a, b là các số thực thỏa mãn a2+b2+ab=3. Tìm giá trị lớn nhất, giá trị nhỏ nhất của P.

Xem đáp án » 13/07/2024 4,990

Câu 3:

Cho các số thực a, b, c thỏa mãn abc = 1, Chứng minh rằng:

aba4+b4+ab+bcb4+c4+bc+cac4+a4+ca1
 

Xem đáp án » 21/08/2022 4,148

Câu 4:

Cho x, y là các số thực thỏa mãn điều kiện x2+y2=1. Tìm giá trị nhỏ nhất của biểu thức P=  3x3y.

Xem đáp án » 13/07/2024 3,789

Câu 5:

Cho ba số thực dương x, y, z thỏa mãn: x+2y+3z=2.

Tìm giá trị lớn nhất của biểu thức: S=xyxy+3z+3yz3yz+x+3xz3xz+4y.

Xem đáp án » 13/07/2024 3,468

Câu 6:

Cho hai số thực dương a, b thỏa mãn a + b = 4ab

Chứng minh rằng: a4b2+1+b4a2+112

Xem đáp án » 21/08/2022 3,259