Câu hỏi:

23/08/2022 434

Điểm O(0; 0) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Ta có: \(\left\{ \begin{array}{l}0 + 3.0 - 6 = - 6 < 0\\2.0 + 0 + 4 = 4 > 0\end{array} \right.\) nên cặp số O(0; 0) thỏa mãn đồng thời cả hai bất phương trình của hệ \(\left\{ \begin{array}{l}x + 3y - 6 < 0\\2x + y + 4 > 0\end{array} \right..\)

Do đó điểm O(0; 0) thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x + 3y - 6 < 0\\2x + y + 4 > 0\end{array} \right..\)

Vậy ta chọn phương án D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Cách 1: Xét từng phương án.

• Xét điểm A(–2; 2):

Ta có: \(\left\{ \begin{array}{l} - 2 - 2 = - 4 < 0\\ - 2 - 3.2 + 3 = - 5 < 0\\ - 2 + 2 - 5 = - 5 < 0\end{array} \right.\)

Do đó cặp số (–2; 2) không thỏa mãn đồng thời ba bất phương trình của hệ đã cho.

Vậy điểm A(–2; 2) không thuộc miền nghiệm của hệ bất phương trình đã cho.

• Xét điểm B(5; 3):

Ta có: \(\left\{ \begin{array}{l}5 - 3 = 2 > 0\\5 - 3.3 + 3 = - 1 < 0\\5 + 3 - 5 = 3 > 0\end{array} \right.\)

Do đó cặp số (5; 3) thỏa mãn đồng thời ba bất phương trình của hệ đã cho.

Vậy điểm B(5; 3) thuộc miền nghiệm của hệ bất phương trình đã cho.

Đến đây ta có thể chọn phương án B.

• Xét điểm C(1; –1):

Ta có: \(\left\{ \begin{array}{l}1 - \left( { - 1} \right) = 2 > 0\\1 - 3.\left( { - 1} \right) + 3 = 7 > 0\\1 + \left( { - 1} \right) - 5 = - 5 < 0\end{array} \right.\)

Do đó cặp số (1; –1) không thỏa mãn đồng thời ba bất phương trình của hệ đã cho.

Vậy điểm C(1; –1) không thuộc miền nghiệm của hệ bất phương trình đã cho.

• Xét điểm O(0; 0):

Ta có: \(\left\{ \begin{array}{l}0 - 0 = 0\\0 - 3.0 + 3 = 3 > 0\\0 + 0 - 5 = - 5 < 0\end{array} \right.\)

Do đó cặp số (0; 0) không thỏa mãn đồng thời ba bất phương trình của hệ đã cho.

Vậy điểm O(0; 0) không thuộc miền nghiệm của hệ bất phương trình đã cho.

Ta chọn phương án B.

Cách 2:

• Ta thấy hệ có bất phương trình x – y > 0 nên ta có x > y.

Do đó điểm thuộc miền nghiệm của hệ phải thỏa mãn hoành độ lớn hơn tung độ.

Khi đó ta loại phương án A và D.

• Hệ có bất phương trình x + y – 5 > 0 nên x + y > 5.

Do đó điểm thuộc miền nghiệm của hệ phải thỏa mãn tổng hoành độ và tung độ lớn hơn 5. Ta loại phương án C.

Vậy ta chọn phương án B.

Câu 2

Hệ bất phương trình nào dưới đây là hệ bất phương trình bậc nhất hai ẩn:

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

• Xét phương án A: \(\left\{ \begin{array}{l}x + y - 1 < 0\\2x + y > 0\end{array} \right.\)

Hệ bất phương trình trên có hai bất phương trình x + y – 1 < 0 và 2x + y > 0 đều là bất phương trình bậc nhất hai ẩn.

• Xét phương án B: \(\left\{ \begin{array}{l}x - y = 0\\2x + y - 4 = 0\end{array} \right.\)

Hệ trên là hệ phương trình bậc nhất hai ẩn không phải là hệ bất phương trình bậc nhất hai ẩn.

• Xét phương án C: \(\left\{ \begin{array}{l}x \ge 0\\3{x^2} + 2y - 1 < 0\end{array} \right.\)

Hệ bất phương trình trên có bất phương trình 3x2 + 2y – 1 < 0 chứa x2 nên không phải là hệ bất phương trình bậc nhất hai ẩn.

• Xét phương án D: \(\left\{ \begin{array}{l}x + y \le 1\\x + 2{y^3} - 1 > 0\end{array} \right.\)

Hệ bất phương trình trên có bất phương trình x + 2y3 – 1 > 0 chứa y3 nên không phải là hệ bất phương trình bậc nhất hai ẩn.

Vậy ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Hệ bất phương trình \(\left\{ \begin{array}{l}x > 0\\x + \sqrt 3 y + 1 > 0\end{array} \right.\) có miền nghiệm không chứa điểm nào sau đây?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hệ bất phương trình \(\left\{ \begin{array}{l}x > 0\\2x - \frac{3}{2}y - 1 \ge 0\\4x - 3y - 2 \le 0\end{array} \right..\) Khẳng định nào sau đây là sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay