Câu hỏi:

25/08/2022 361 Lưu

Cho tập hợp \({C_\mathbb{R}}A = \left[ {0;6} \right)\), \({C_\mathbb{R}}B = \left( { - \frac{{12}}{3};5} \right) \cup \left( {\sqrt {17} ;\sqrt {55} } \right).\) Tập \({C_\mathbb{R}}\left( {A \cap B} \right)\)là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có:\[{C_\mathbb{R}}A = \left[ {0;6} \right) = \mathbb{R}\backslash A\], suy ra \[A = \left( { - \infty ;\,0} \right) \cup \left[ {6; + \infty } \right)\].

Lại có:\[{C_\mathbb{R}}B = \left( { - \frac{{12}}{3};5} \right) \cup \left( {\sqrt {17} ;\sqrt {55} } \right) = \left( { - \frac{{12}}{3};\,\sqrt {55} } \right) = \mathbb{R}\backslash B\]

(do \(\sqrt {17} = 4,123...\); \(\sqrt {55} = 7,416....\)).

Suy ra \[B = \left( { - \infty ; - \frac{{12}}{3}} \right] \cup \left[ {\sqrt {55} ; + \infty } \right).\]

Do đó, \[A \cap B = \left( { - \infty ; - \frac{{12}}{3}} \right] \cup \left[ {\sqrt {55} ; + \infty } \right)\]

\[ \Rightarrow {C_\mathbb{R}}\left( {A \cap B} \right) = \mathbb{R}\backslash \left( {A \cap B} \right) = \left( { - \frac{{12}}{3};\sqrt {55} } \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Gọi A, B, C lần lượt là tập hợp các học sinh giỏi Toán, tập hợp các học sinh giỏi Lý và

tập học các học sinh không giỏi môn nào cả.

Theo bài ra ta có:

n(A) = 23;

n(B) = 22;

n(A ∩ B) = 15 (A ∩ B là tập hợp các học sinh giỏi cả môn Toán và môn Lý);

n(C) = 5.

Ta có biểu đồ Ven biểu diễn 3 tập hợp A, B, C như sau

Một lớp học có 23 học sinh giỏi môn Toán, 22 học sinh giỏi môn Lý, 15 học sinh (ảnh 1)

Từ biểu đồ ta thấy, số học sinh cả lớp là: n(A B) + n(C).

Lại có: n(A B) = n(A) + n(B) – n(A ∩ B) = 23 + 22 – 15 = 30.

Vậy số học sinh cả lớp là: 30 + 5 = 35 (học sinh).

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có: \[8 < \left| { - 3x + 5} \right| \Leftrightarrow \left[ \begin{array}{l} - 3x + 5 > 8\\ - 3x + 5 < - 8\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x < - 1\\x > \frac{{13}}{3}\end{array} \right.\]

C = {x ℝ| 8 < |– 3x + 5|}.

Do đó, C = {x ℝ| x < – 1 hoặc x > \(\frac{{13}}{3}\)} = \(\left( { - \infty ; - 1} \right) \cup \left( {\frac{{13}}{3}; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP