Cho A = {x ∈ ℝ| x + 2 ≥ 0}, B = {x ∈ ℝ| 5 – x ≥ 0}. Số các số nguyên thuộc cả hai tập A và B là:
Cho A = {x ∈ ℝ| x + 2 ≥ 0}, B = {x ∈ ℝ| 5 – x ≥ 0}. Số các số nguyên thuộc cả hai tập A và B là:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Ta có A = {x ∈ ℝ| x + 2 ≥ 0} = {x ∈ ℝ| x ≥ – 2} = [– 2; + ∞).
B = {x ∈ ℝ| 5 – x ≥ 0} = {x ∈ ℝ| x ≤ 5} = (– ∞; 5].
Suy ra A ∩ B = [– 2; + ∞) ∩ (– ∞; 5] = [– 2; 5].
Các số nguyên thuộc cả hai tập A và B chính là các số nguyên thuộc tập A ∩ B, đó là các số: – 2; – 1; 0; 1; 2; 3; 4; 5.
Vậy có 8 số nguyên thuộc cả hai tập A và B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Gọi A, B, C lần lượt là tập hợp các học sinh giỏi Toán, tập hợp các học sinh giỏi Lý và
tập học các học sinh không giỏi môn nào cả.
Theo bài ra ta có:
⦁ n(A) = 23;
⦁ n(B) = 22;
⦁ n(A ∩ B) = 15 (A ∩ B là tập hợp các học sinh giỏi cả môn Toán và môn Lý);
⦁ n(C) = 5.
Ta có biểu đồ Ven biểu diễn 3 tập hợp A, B, C như sau

Từ biểu đồ ta thấy, số học sinh cả lớp là: n(A ∪ B) + n(C).
Lại có: n(A ∪ B) = n(A) + n(B) – n(A ∩ B) = 23 + 22 – 15 = 30.
Vậy số học sinh cả lớp là: 30 + 5 = 35 (học sinh).
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có: \[8 < \left| { - 3x + 5} \right| \Leftrightarrow \left[ \begin{array}{l} - 3x + 5 > 8\\ - 3x + 5 < - 8\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x < - 1\\x > \frac{{13}}{3}\end{array} \right.\]
Mà C = {x ∈ ℝ| 8 < |– 3x + 5|}.
Do đó, C = {x ∈ ℝ| x < – 1 hoặc x > \(\frac{{13}}{3}\)} = \(\left( { - \infty ; - 1} \right) \cup \left( {\frac{{13}}{3}; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.