Câu hỏi:

25/08/2022 1,747

Một lớp học có 23 học sinh giỏi môn Toán, 22 học sinh giỏi môn Lý, 15 học sinh

giỏi cả môn Toán và Lý và có 5 học sinh không giỏi môn nào cả. Hỏi lớp đó có bao nhiêu học sinh?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Gọi A, B, C lần lượt là tập hợp các học sinh giỏi Toán, tập hợp các học sinh giỏi Lý và

tập học các học sinh không giỏi môn nào cả.

Theo bài ra ta có:

n(A) = 23;

n(B) = 22;

n(A ∩ B) = 15 (A ∩ B là tập hợp các học sinh giỏi cả môn Toán và môn Lý);

n(C) = 5.

Ta có biểu đồ Ven biểu diễn 3 tập hợp A, B, C như sau

Một lớp học có 23 học sinh giỏi môn Toán, 22 học sinh giỏi môn Lý, 15 học sinh (ảnh 1)

Từ biểu đồ ta thấy, số học sinh cả lớp là: n(A B) + n(C).

Lại có: n(A B) = n(A) + n(B) – n(A ∩ B) = 23 + 22 – 15 = 30.

Vậy số học sinh cả lớp là: 30 + 5 = 35 (học sinh).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tập hợp C = {x ℝ| 8 < |– 3x + 5|}. Hãy viết lại các tập hợp C dưới dạng khoảng, nửa khoảng, đoạn.

Xem đáp án » 25/08/2022 1,419

Câu 2:

Cho tập hợp \({C_\mathbb{R}}A = \left[ {0;6} \right)\), \({C_\mathbb{R}}B = \left( { - \frac{{12}}{3};5} \right) \cup \left( {\sqrt {17} ;\sqrt {55} } \right).\) Tập \({C_\mathbb{R}}\left( {A \cap B} \right)\)là:

Xem đáp án » 25/08/2022 342

Câu 3:

Cho A = {x ℝ| x + 2 ≥ 0}, B = {x ℝ| 5 – x ≥ 0}. Số các số nguyên thuộc cả hai tập AB là:

Xem đáp án » 25/08/2022 332

Câu 4:

Cho hai tập khác rỗng E = (m – 1; 4] và F = (– 2; 2m + 2] với m . Xác định m để F E.

Xem đáp án » 25/08/2022 213
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua