Câu hỏi:
25/08/2022 270Cho tam giác ABC có BC = a, AC = b và AB = c. Biết \(\widehat C = 120^\circ .\) Khẳng định nào sau đây là đúng?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Theo định lí côsin ta có: c2 = a2 + b2 – 2ab.cosC.
Mà \(\widehat C = 120^\circ \) nên cosC = \( - \frac{1}{2}\)
Do đó c2 = a2 + b2 – 2ab.\(\left( { - \frac{1}{2}} \right)\) = c2 = a2 + b2 + ab.
Vậy ta chọn phương án B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Nếu góc α thỏa mãn 90° ≤ α ≤ 180° thì α là góc tù.
Khi đó sinα > 0, cosα < 0, tanα < 0, cotα < 0.
Do đó ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Với điểm \[M\left( {\frac{4}{5};\frac{3}{5}} \right)\], ta có \(\widehat {xOM} = \alpha \). Khi đó theo định nghĩa, ta có:
⦁ sinα = yM = \(\frac{3}{5}\);
⦁ cosα = xM = \(\frac{4}{5}\).
Vậy ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.