Câu hỏi:

27/08/2022 154 Lưu

Cho các số dương a, b, c thỏa mãn a+b+c=1.

Chứng minh rằng: a1a+b1b+c1c>2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có a1a+b1b+c1c>2

aa+b+ca+ba+b+cb+ca+b+cc>2ab+c+ba+c+ca+b>22a2ab+c+2b2ba+c+2c2ca+b>2a2ab+c+b2ba+c+c2ca+b>1

Áp dụng bất đẳng thức Cosi ta có

 a+b+c2ab+cb+a+c2ba+cc+a+b2ca+ba2ab+caa+b+cb2ba+cba+b+cc2ca+bca+b+c

a2ab+c+b2ba+c+c2ca+ba+b+ca+b+c=1

Dấu “=” xảy ra khi a=b+cb=c+ac=a+ba=b=c=0 ( vô lý vì a, b, c>0).

Vậy a1a+b1b+c1c>2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1:

Nhận xét: trong tất cả các điều kiện và biểu thức, vai trò của x, y đều bình đẳng nên C đạt GTNN khi x=y. Do đó, ta biến đổi như bên dưới.

Ta có: C=x2+y2+xy=ax+y2+bxy2=a+bx2+y2+2abxy.

Suy ra a+b=1ab=12a=34b=14.

Hay ta có: C=34x+y2+14xy2=34.1+14xy234

Dấu “=” xảy ra khi x=yx+y=1x=y=12.

Vậy, giá trị nhỏ nhất của C là minC=34 khi x=y=12.

Cách 2:

Do x+y=1y=1x. Khi đó, ta có:

C=x2+y2+xy=x2+1x2+x1x=x2x+1=x122+3434.

Dấu “=” xảy ra khi x=12x+y=1x=y=12.

Vậy, minC=34 khi x=y=12.

Lời giải

- Dùng máy tính casio ta chọn được điểm rơi tại x = 2, y = 4. Nên ta có:

P=3x+2y+6x+8y=3x2+6x+2y4+8y+1,5x+1,5y

- Áp dụng BĐT Cô-si cho từng cặp số trong ngoặc ta được

P6+4+1,5(x+y)=6+4+1,5.6=19

Dấu bằng xảy ra khi: 3x2=6x2y4=8yx+y6x=±2y=±4x+y6x=2y=4

Vậy Pmin = 19 tại x=2y=4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP