Câu hỏi:

27/08/2022 329

Cho hình hộp chữ nhật ABCDA'B'C'D' nội tiếp mặt cầu tâm O (các đỉnh của hình hộp chữ chữ nhật nằm trên mặt cầu). Các kích thước của hình hộp chữ nhật lần lượt là a, b, c. Gọi S1 là diện tích toàn phần của hình hộp chữ nhật, S2 là diện tích mặt cầu. Tìm mối liên hệ giữa a,b, c để tỉ lệ S1S2 lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có S1=2ab+ac+bc,

Description: Đáp án đề thi vào lớp 10 môn Toán S2=4πa2+b2+c24=πa2+b2+c2.

Do đó:

S1S2=2ab+ac+bcπa2+b2+c2=22ab+2ac+2bcπ2a2+2b2+2c2

 

Mặt khác 22ab+2ac+2bcπ2a2+2b2+2c22π

Do đó, tỉ lệ S1S2 lớn nhất là 2π. Điều này xảy ra khi và chỉ khi a=b=c.

Cho hình hộp chữ nhật ABCDA'B'C'D' nội tiếp mặt cầu tâm O (các đỉnh của hình hộp chữ chữ nhật nằm trên mặt cầu) (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1:

Nhận xét: trong tất cả các điều kiện và biểu thức, vai trò của x, y đều bình đẳng nên C đạt GTNN khi x=y. Do đó, ta biến đổi như bên dưới.

Ta có: C=x2+y2+xy=ax+y2+bxy2=a+bx2+y2+2abxy.

Suy ra a+b=1ab=12a=34b=14.

Hay ta có: C=34x+y2+14xy2=34.1+14xy234

Dấu “=” xảy ra khi x=yx+y=1x=y=12.

Vậy, giá trị nhỏ nhất của C là minC=34 khi x=y=12.

Cách 2:

Do x+y=1y=1x. Khi đó, ta có:

C=x2+y2+xy=x2+1x2+x1x=x2x+1=x122+3434.

Dấu “=” xảy ra khi x=12x+y=1x=y=12.

Vậy, minC=34 khi x=y=12.

Lời giải

- Dùng máy tính casio ta chọn được điểm rơi tại x = 2, y = 4. Nên ta có:

P=3x+2y+6x+8y=3x2+6x+2y4+8y+1,5x+1,5y

- Áp dụng BĐT Cô-si cho từng cặp số trong ngoặc ta được

P6+4+1,5(x+y)=6+4+1,5.6=19

Dấu bằng xảy ra khi: 3x2=6x2y4=8yx+y6x=±2y=±4x+y6x=2y=4

Vậy Pmin = 19 tại x=2y=4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay