Câu hỏi:

19/08/2025 17,206 Lưu

Người ta muốn xây dựng một cây cầu bắc qua một hồ nước hình tròn có bán kính 2km. Hãy tính chiều dài của cây cầu để khoảng cách từ cây cầu đến tâm của hồ nước là 1732m.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hình vẽ minh họa bài toán:

 Media VietJack

Ta có: OA = OB = 2km (gt)

Gọi H là trung điểm của AB, dây AB không qua tâm O

         OH vuông với AB tại H (liên hệ giữa đường kính và dây cung)

Xét ∆OHA vuông tại H

         OA2=OH2+AH2 (định lý Pytago)

         AH2=OA2OH2=221,7322

         AH=221,73221km

Ta có:  AB=2AH=2.1=2km (vì H là trung điểm của AB)

Vậy chiều dài của cây cầu là khoảng 2km.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hình vẽ minh họa bài toán:

Media VietJack

Dựa vào hình vẽ minh họa, ta có: AH = BD = 10m

Xét ∆AHB vuông tại H, ta có:

                 tanBAH=BHAH (tỉ số lượng giác của góc nhọn)

         BH=AH.tanBAH=10.tan100m

Xét ∆AHC vuông tại H, ta có:

                 tanCAH=CHAH (tỉ số lượng giác của góc nhọn)

         CH=AH.tanCAH=10.tan550m

Ta có:  BC=BH+CH=10.tan100+10.tan55016m

Vậy chiều cao của tháp là 16m

Lời giải

Dựa vào hình vẽ bài toán, ta có:

                BC = 5m

                AD = EH = 7m

                 BAE^= 500CAE^==400 

                  CEA^=BEA^=900

 Xét ∆CAE vuông tại E, ta có:

                tanCAE=CEAE (tỉ số lượng giác của góc nhọn)

         CE=AE.tanCAE=AE.tan400m (1)

 Xét ∆BAE vuông tại E, ta có:

                 tanBAE=BEAE (tỉ số lượng giác của góc nhọn)

         BE=AE.tanBAE=AE.tan500m (2)

 Từ (1) và (2)  BECE=AE.tan500AE.tan400 

         BC=AE.tan500tan4005=AE.tan500tan400AE=5tan500tan400m

 Từ (1)  CE=5tan500tan400.tan400m

         BH=BC+CE+EH=5+5.tan400tan500tan400+723,9m

 Vậy chiều cao của tòa nhà là 23,9m

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP