Câu hỏi:

13/07/2024 16,393 Lưu

Một bánh xe có dạng hình tròn bán kính 20cm lăn đến bức tường hợp với mặt đất một góc 600. Hãy tính khoảng cách ngắn nhất từ tâm bánh xe đến góc tường.

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Khi bánh xe chạm tới bức tường thì không thể di chuyển vào thêm được nữa. Điều này có nghĩa khoảng cách của tâm bánh xe đến góc tường ngắn nhất là khi bánh xe tiếp xúc với bức tường và mặt đất.

Hình vẽ minh họa bài toán:

 Media VietJack

 Ta có: OB = OC = 20cm (gt)

                 BAC^=600 (gt)

                 OAB^=12BAC^=12.600=300 (tính chất hai tiếp tuyến cắt nhau)

 Xét ∆OAB vuông tại B (vì AB tiếp tuyến của (O) nên AB vuông với OB)

         sin BAO^=OBOA (tỉ số lượng giác góc nhọn)

         OA=OB=20sin300=40cm

 Vậy khoảng cách ngắn nhất từ tâm bánh xe đến góc tường là 40cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hình vẽ minh họa bài toán:

Media VietJack

Dựa vào hình vẽ minh họa, ta có: AH = BD = 10m

Xét ∆AHB vuông tại H, ta có:

                 tanBAH=BHAH (tỉ số lượng giác của góc nhọn)

         BH=AH.tanBAH=10.tan100m

Xét ∆AHC vuông tại H, ta có:

                 tanCAH=CHAH (tỉ số lượng giác của góc nhọn)

         CH=AH.tanCAH=10.tan550m

Ta có:  BC=BH+CH=10.tan100+10.tan55016m

Vậy chiều cao của tháp là 16m

Lời giải

a) Hình vẽ minh họa bài toán:

Media VietJack

Xét ∆ABC vuông tại A, ta có:

                 sinB=ACBC=12320=380 (tỉ số lượng giác của góc nhọn)

        B^209'

Vậy góc nghiêng là  209'

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP