Câu hỏi:

13/07/2024 6,788

Cho phương trình  x22mx4m5  1 ( m là tham số)

a) Giải phương trình (1) khi m=-2.

b) Chứng minh phương trình (1) luôn có nghiệm với mọi giá trị của m.

c) Gọi x1 ; x2  là hai nghiệm của phương trình (1). Tìm m để: 12x12m1x1+x22m+332=762019

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Thay  m=2 vào phương trình (1) ta có: x2+4x+3=0xx+3+x+3=0x+3x+1=0x=3x=1

Vậy với m=2  thì phương trình có tập nghiệm S=3;  1

b) Ta có: Δ'=m24m5=m+22+1>0,  m

Do đó phương trình  luôn có hai nghiệm với mọi giá trị của m.

c) Do phương trình  luôn có hai nghiệm với mọi giá trị của m, gọi  là hai nghiệm của phương trình

Áp dụng định lí Vi-ét ta có: x1+x2=2mx1x2=4m5

Ta có: 12x12m1x1+x22m+332=762019

x122m1x1+2x24m+33=1524038x122mx14m5+2x1+x2=1524000

 2x1+x2=1524000(do x1 là nghiệm của (1)   nên  x122mx14m5=0)

2.2m=1524000m=381000

Vậy m=381000  thỏa mãn yêu cầu bài toán.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có:

 TF=1,8.TC+32hayTF=1,8.25+32=77

Vậy 25°C   ứng với   77°F

b) Ta có A =  5,6.TF275

hay    106=5,6.TF275 TF=106+2755,668,036

Vậy nhiệt độ tính theo độ C của con dế là:

TC=TF321,8=68,036321,820(°C) 

Vậy con dế kêu 106 tiếng thì lúc đó nó 20 độ C.

Ta có: 12x12m1x1+x22m+332=762019

x122m1x1+2x24m+33=1524038x122mx14m5+2x1+x2=1524000 

2x1+x2=1524000(do x1  là nghiệm của  nên x122mx14m5=0  )

2.2m=1524000m=381000

Vậy m=381000   thỏa mãn yêu cầu bài toán.

 

Lời giải

x22m3x+m22m=0

Δ=2m324m22m=4m212m+94m2+8m=4m+9

Δ>04m+9>04m>9m<94

Phương trình có hai nghiệm phân biệt khi Δ>04m+9>04m>9m<94

Áp dụng định lý Vi et ta có:

S=x1+x2=2m3P=x1.x2=m22m 

x1x2=7x1x22=49x12+x222x1.x2=49x1+x224x1.x2=49

Thay   x1+x2=2m3x1.x2=m22m

Ta được  2m324m22m=494m+9=49m=10 (t/m đk)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP