Câu hỏi:
11/07/2024 527
Cho tam giác đường phân giác BN và tâm O của đường tròn nội tiếp trong tam giác. Từ A kẻ một tia vuông góc với tia BN, cắt BC tại H. Chứng minh bốn điểm A; O; H; C nằm trên một đường tròn.
Quảng cáo
Trả lời:


Cách giải 1:
Xét ACP có CK vừa là phân giác vừa là đường cao nên CK cũng là đường trung tuyến, đường trung trực => KA = KP (1)
Xét ABH có BI vừa là phân giác vừa là đường cao nên BI cũng là đường trung tuyến, đường trung trực => IA = IH (2)
Từ (1) và (2) ta có: IK là đường trung bình trong tam giác APH
( Hình 1)
Hoặc (Hình 2)
Xét tứ giác AKOI có => AKOI là tứ giác nội tiếp Tứ giác AOHC nội tiếp được => A; O; H; C cùng nằm trên một đường tròn.
Cách giải 2:
Ta có BN là đường trung trực của AH mà nên => Tứ giác AOHC nội tiếp được. => A; O; H; C cùng nằm trên một đường tròn.
Cách giải 3:
ABI là tam giác vuông nên hay Suy ra: => bằng (hoặc bù) với góc Tứ giác AOHC nội tiếp được => A; O; H; C cùng nằm trên một đường tròn.
Cách giải 4:
* Đối với (Hình 1) ta có Góc ngoài trong tam giác
(Vì O là tâm của đường tròn nội tiếp)
Tứ giác AOHC nội tiếp được => A; O; H; C cùng nằm trên một đường tròn.
* Đối với (Hình 2) Xét trong tam giác IBH ta có
(Vì O là tâm của đường tròn nội tiếp)
Tứ giác AOHC nội tiếp được => A; O; H; C cùng nằm trên một đường tròn.
Cách giải 5:
Ta có (Góc ngoài ở đỉnh O của tam giác AOB)
(Hình 1)
hoặc (Hình 2)
=> Tứ giác AOHC nội tiếp được => A; O; H; C cùng nằm trên một đường tròn
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ