Câu hỏi:

13/07/2024 5,779

    2, Gọi AxA;yA,BxB,yB là hai giao điểm phân biệt của (d) và (P) Tìm tất cả các giá trị của tham số để m xA>0 và xB>0

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

      2, Ta có phương trình hoành độ giao điểm của hai đồ thị hàm số (d) và (P)

12x2=x+m1x22x2m+2=0(*)

Theo đề bài ta có: d cắt (P) tại hai điểm AxA,yA,BxB,yBphân biệt

* có hai nghiệm phân biệt Δ'>0

12m+2>01+2m2>0m>12

Vậy với m>12 thì phương trình (*) có hai nghiệm xA,xB phân biệt

Áp dụng hệ thức Vi-et ta có: xA+xB=2xAxB=2m+2

Theo đề bài ta có: xA>0xB>0xA+xB>0xA.xB>02>0m2m+2>02m>2m<1

Kết hợp các điều kiện của m ta được: 12<m<1

Vậy 12<m<1 thỏa mãn bài toán.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

         

Cho đường tròn (O, R).Từ một điểm M ở ngoài đường tròn ( O,R) sao cho OM=2R (ảnh 1)

     Xét ΔOAMΔOBMta có:

OA=OB=R; OM chung; MA=MB(tính chất hai tiếp tuyến cắt nhau)

ΔOAM=ΔOBMc.c.cSOAM=SOBMSMAOB=SOAM+SOBM=2SOAM

Áp dụng định lý Pytago trong tam giác vuông OAM ta có:

AM2=OM2OA2=2R2R2=3R2AM=R3SMAOB=2SOAM=2.12OA.AM=R.R3=R23(dvdt)

Lời giải

x2+ax+b+2=0  ta có: Δ=a24b+2=a24b8

Để phương trình có 2 nghiệm phân biệt thì Δ>0a24b8>0*

Khi đó, áp dụng định lý Viet ta có: x1+x2=ax1x2=b+2

Theo bài ra ta có:

x1x2=4x13x23=28x1x2=4x1x233x1x2x1x2=28x1x2=443+12x1x2=28x1x2=4x1x2=3mà 

x1x2=b+2b+2=3b=32=5

Ta có: x1+x2=ax1x2=42x1=4a2x2=a4x1=4a2x2=a42

x1x2=34a2.a42=34aa+4=1216a2=12a2=4a=2a=2

Với a2=4,b=5a24b8=44.(5)8=16>0thỏa mãn điều kiện (*)

Vậy có 2 cặp số a,b thỏa mãn yêu cầu bài toán là a,b2;5;2;5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay