Câu hỏi:

13/07/2024 441

Cho tam giác ABC vuông tại A (AB> AC) , đường cao AH. Trên đoạn HC lấy điểm D sao cho DH= DB vẽ CE vuông góc với ADEAD.

Chứng minh tứ giác AHEC nội tiếp, xác định tâm O của đường tròn ngoại tiếp tứ giác AHEC 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A (AB> AC) , đường cao AH. (ảnh 1)

Ta có: AHC^=900(vì AHBC) AEC^=900(vì AEEC)

Xét tứ giác AHCE có E, H là hai đỉnh kề nhau cùng nhìn cạnh AC dưới một góc α=900AHC^=AEC^=900

Suy ra tứ giác AHCE là tứ giác nội tiếp . Tâm O của đường tròn ngoại tiếp tứ giác AHCE là trung điểm của cạnh AC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi thời gian làm riêng công việc của đội thứ nhất là x (giờ) x>0

Thời gian làm riêng xong công việc của đội thứ hai là x +6 (giờ)

Trong 1 giờ, đội thứ nhất làm được : 1x(công việc)

Trong 1 giờ, đội thứ hai làm được: 1x+6(công việc)

Hai đội cùng làm một công việc thì xong trong 4 giờ nên ta có:

4.1x+1x+6=11x+1x+6=144.x+64xx+6+4x4xx+6=xx+64xx+64.x+6+4x=xx+64x+24+4x=x2+6xx2+6x4x244x=0x22x24=0x26x+4x24=0xx6+4x6=0x+4x6=0x=4(ktm)x=6(tm)

Vậy đội thứ nhất làm riêng xong công việc trong 6 giờ, đội thứ hai làm riêng xong công việc trong 12 giờ.

Lời giải

a, Ta có: x24x+4=x22

Điều kiện: x220 luôn đúng với mọi x

x24x+4+x=8x22+x=8(*)x2+x=8

Nếu x20 thì x2x2=x2

Khi đó phương trình (*) trở thành: x2+x=8x=5(tm)

Nếu x2<0x<2x2=x+2

Khi đó, phương trình (*) trở thành x2+x=82=8(vô lý)

Vậy tập nghiệm của phương trình đã cho là S=5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay