Trong hệ tọa độ Oxy cho ba điểm A (–1 ; 1), B (1 ; 3), C (–1; 4) , D(1; 0). Khẳng định nào sau đây đúng?
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: C
Ta có : \[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( {1 - ( - 1);3 - 1} \right) = \left( {2;2} \right)\\\overrightarrow {AC} = \left( { - 2 - ( - 1);0 - 1} \right)\end{array} \right.\] \[ \Leftrightarrow \]\[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( {2;2} \right)\\\overrightarrow {AC} = \left( { - 1; - 1} \right)\end{array} \right.\] nhận thấy
\[\overrightarrow {AB} \]= -2. (-1; -1) = \[ - 2\overrightarrow {AC} \].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là : B
Xét tam giác ABC, có :
M là trung điểm AB
N là trung điểm AC
Suy ra MN là đường trung bình tam giác ABC
Theo tính chất đường trung bình, ta có :
\[\overrightarrow {MN} = \frac{1}{2}\overrightarrow {BC} \] = \[\frac{1}{2}\].(2; –8) = (1; –4).
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Áp dụng công thức tính khoảng cách từ một điểm đến đường thẳng ta có:
\[d\left( {M;\Delta } \right) = \frac{{\left| {3.( - 1) - 4.1 - 3} \right|}}{{\sqrt {9 + 16} }} = \frac{{10}}{5} = \]2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.