Câu hỏi:

13/07/2024 1,096

Tìm tất cả các giá trị của tham số m để phương trình x22mx+m23m+2=0 có Δ'=3m2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình đã cho có 2 nghiệm phân biệt khi Δ'>0m>23.

Điều kiện để phương trình có 2 nghiệm phân biệt khác 0 là:m>23 và m23m+20(1)
Theo định lí Viet: x1+x2=2m;  x1x2=m23m+2
x1x2+x2x1=16x12+x22=16x1x2(x1+x2)218x1x2=0
(2m)218(m23m+2)=07m227m+18=0m=3 hoặc m=67(thỏa (1))
Vậy m=3 hoặc m=67

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm các giá trị của tham số m để phương trình x2+(2m1)x+m21=0 có hai nghiệm x1; x2 sao cho biểu thức P=x12+x22 đạt giá trị nhỏ nhất

Xem đáp án » 13/07/2024 13,307

Câu 2:

b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm m để x1=2x2. 

Xem đáp án » 13/07/2024 12,392

Câu 3:

Cho phương trình x2mx1 = 0,m là tham số. Tìm giá trị của m để phương trình có hai

nghiệm phân biệt x1,x2 thỏa mãn x121x221=1.

Xem đáp án » 13/07/2024 9,509

Câu 4:

b) Tìm m để hai nghiệm x1; x2 của phương trình đã cho thỏa mãn điều kiện |x1-x2|=17.

Xem đáp án » 11/07/2024 8,288

Câu 5:

Cho phương trình x22m+1x+m1=0(m là tham số). Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn 3x1+x2=0.

Xem đáp án » 12/07/2024 7,953

Câu 6:

Gọi x1, x2 là 2 nghiệm phân biệt của phương trình. Tìm các giá trị của m sao cho x12+x1x2+3x2=7.

Xem đáp án » 13/07/2024 7,691

Câu 7:

2) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m Gọi x1,x2 là hai nghiệm của phương trình (1) lập phương trình bậc hai nhận x132mx12+m2x12 và  x232mx22+m2x22 là nghiệm.

Xem đáp án » 11/07/2024 6,621
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua