Câu hỏi:

13/07/2024 153

c) x4+3x24=0

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) Đặt u=x20 phương trình trở thành:

              u2+3u4=0u1u+4=0u=1x2=1x=±1u=4L

Vậy tập nghiệm của phương trình S=±1.

Cách khác :

Phương trình: x21x2+4=0x21=0x=±1

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm các giá trị của tham số m để phương trình x2+(2m1)x+m21=0 có hai nghiệm x1; x2 sao cho biểu thức P=x12+x22 đạt giá trị nhỏ nhất

Xem đáp án » 13/07/2024 6,928

Câu 2:

b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm m để x1=2x2. 

Xem đáp án » 13/07/2024 5,404

Câu 3:

b) Tìm m để hai nghiệm x1; x2 của phương trình đã cho thỏa mãn điều kiện |x1-x2|=17.

Xem đáp án » 11/07/2024 4,896

Câu 4:

Gọi x1, x2 là 2 nghiệm phân biệt của phương trình. Tìm các giá trị của m sao cho x12+x1x2+3x2=7.

Xem đáp án » 13/07/2024 4,654

Câu 5:

c) Tìm m để phương trình (1) luôn có hai nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau.

Xem đáp án » 12/07/2024 4,367

Câu 6:

2) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m Gọi x1,x2 là hai nghiệm của phương trình (1) lập phương trình bậc hai nhận x132mx12+m2x12 và  x232mx22+m2x22 là nghiệm.

Xem đáp án » 11/07/2024 3,930

Câu 7:

b) Gọi x1, x2 là các nghiệm của phương trình. Tìm m để biểu thức A=x12+x22x1x2. đạt giá trị nhỏ nhất.

Xem đáp án » 13/07/2024 3,559

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store