Câu hỏi:

13/07/2024 1,419

Cho hai đoạn thẳng AB và CD cắt nhau tại E. Các tia phân giác ACE^; DBE^ cắt nhau ở K. Chứng minh: BKC^=BAC^+BDC^2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

* Tìm cách giải. Chúng ta nhận thấy BKC^ là góc của tam giác BKG; CKH nên cần phải ghép vào hai tam giác ấy. Khai thác yêu cầu của bài toán (liên quan tới góc A ^; C^) đồng thời để vận dụng yếu tố tia phân giác của giả thiết, chúng ta cần xét các cặp tam giác ΔKGB, ΔAGC và cặp tam giác ΔKHC, ΔDHB.

* Trình bày lời giải.

Gọi G là giao điểm CK và AE và H là giao điểm BK và DE.

Xét KGB và AGC có:

KGB^=AGC^ (đối đỉnh)

K^+B1^=A ^+C1^     1

Xét KHC và DHB có:

KHC^=BHD^ (đối đỉnh)

K^+C2^=D^+B2^     2

Từ (1) và (2), kết hợp với B1^=B2^; C1^=C2^2K^=A ^+D^

K^=A ^+D^2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hình 1. ABC có A^+B^+C^=180° 

            56°+x°+12°+x°=180°x°=56°.

              - Hình 2. MNP vuông tại  MN^+P^=90° 

            2x°+x°15°=90°x°=35°.

- Hình 3. DEF có D^+E^+F^=180° =>x°+3x°25°+x°+10°=180°x°=39°.

Lời giải

Media VietJack

a) ABD có A1^+B^+ADB^=180°;

ACD có A2^+C^+ADC^=180°;

A1^=A2^ nên C^+ADC^=B^+ADB^ADC^ADB^=B^C^.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP