Câu hỏi:

28/09/2022 7,002

Cho a, b, c, d khác 0, thỏa mãn \[{b^2} = ac;{c^2} = bd\]. Chứng minh rằng:

\[\frac{{{a^3} + {b^3} - {c^3}}}{{{b^3} + {c^3} - {d^3}}} = {\left( {\frac{{a + b - c}}{{b + c - d}}} \right)^3};\]

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn:

Từ \[{b^2} = ac \Rightarrow \frac{a}{b} = \frac{b}{c};{c^2} = bd \Rightarrow \frac{b}{c} = \frac{c}{d} \Rightarrow \frac{a}{b} = \frac{b}{c} = \frac{c}{d}\].

Đặt \[\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = k \Rightarrow a = bk;b = ck;c = dk\]

Xét \[\frac{{{a^3} + {b^3} - {c^3}}}{{{b^3} + {c^3} - {d^3}}} = \frac{{{b^3}{k^3} + {c^3}{k^3} - {d^3}{k^3}}}{{{b^3} + {c^3} - {d^3}}} = \frac{{{k^3}\left( {{b^3} + {c^3} - {d^3}} \right)}}{{{b^3} + {c^3} - {d^3}}} = {k^3}\left( 1 \right)\]

Xét \[{\left( {\frac{{a + b - c}}{{b + c - d}}} \right)^3} = {\left( {\frac{{bk + ck - dk}}{{b + c - d}}} \right)^3} = {\left( {\frac{{k\left( {b + c - d} \right)}}{{b + c - d}}} \right)^3} = {k^3}\left( 2 \right)\]

Từ (1) và (2), suy ra : \[\frac{{{a^3} + {b^3} - {c^3}}}{{{b^3} + {c^3} - {d^3}}} = {\left( {\frac{{a + b - c}}{{b + c - d}}} \right)^3}\] điều phải chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm x, y biết :

\[\frac{{1 + 3y}}{{12}} = \frac{{1 + 5y}}{{5x}} = \frac{{1 + 7y}}{{4x}}\]

Xem đáp án » 28/09/2022 16,444

Câu 2:

Tìm hai số x và y biết \[\frac{x}{2} = \frac{y}{3}\] và \[xy = 24\]

Xem đáp án » 28/09/2022 9,215

Câu 3:

Một khu đất hình chữ nhật có chiều rộng và chiều dài tỉ lệ với 5 và 8. Diện tích bằng \[1960{m^2}\]. Tính chu vi hình chữ nhật đó.

Xem đáp án » 28/09/2022 7,470

Câu 4:

Cho tỉ lệ thức \[\frac{{3x - y}}{{x + y}} = \frac{3}{4}\]. Tính giá trị của tỉ số \[\frac{x}{y}\]

Xem đáp án » 28/09/2022 7,327

Câu 5:

Cho x, y thỏa mãn \[\frac{{2x + 1}}{5} = \frac{{3y - 2}}{7} = \frac{{2x + 3y - 1}}{{6x}}\]. Tìm x, y

Xem đáp án » 28/09/2022 7,244

Câu 6:

Cho các số a; b; c khác 0 thỏa mãn \[\frac{{ab}}{{a + b}} = \frac{{bc}}{{b + c}} = \frac{{ca}}{{c + a}}\]

Tính giá trị của biểu thức \[P = \frac{{a{b^2} + b{c^2} + c{a^2}}}{{{a^3} + {b^3} + {c^3}}}\]

Xem đáp án » 28/09/2022 7,041

Bình luận


Bình luận