Câu hỏi:

13/07/2024 11,650

Có 3 khách hàng (không quen biết nhau) cùng đến một cửa hàng có 5 quầy phục vụ khác nhau. Tính xác suất để có 2 khách hàng cùng vào một quầy và khách hàng còn lại vào một quầy khác.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Mỗi khách hàng có 5 cách chọn quầy nên số phần tử của không gian mẫu là:

n(Ω) = 5.5.5 = 53 = 125.

Gọi A là biến cố “2 khách hàng cùng vào một quầy và khách hàng còn lại vào một quầy khác”.

Số cách chọn 2 khách hàng trong 3 khách hàng là C32 = 3.

Số cách chọn quầy cho 2 khách hàng đó là 5 cách chọn.

Vì khách hàng còn lại vào 1 quầy khác nên có 4 cách chọn quầy cho khách hàng còn lại.

Suy ra số phần tử của biến cố A là: n(A) = 3.5.4 = 60.

Vậy xác suất của biến cố A là: PA=nAnΩ=60125=1225.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sáu chữ số của mật khẩu thuộc tập hợp {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.

Mỗi cách bấm sáu chữ số đó cho ta một chỉnh hợp chập 6 của tập hợp 10 phần tử.

Vì vậy không gian mẫu Ω gồm các chỉnh hợp chập 6 của tập hợp 10 phần tử và n(Ω) = A106.

Gọi C là biến cố “Bác Ngân bấm đúng mật khẩu của chiếc điện thoại cũ đó trong một lần”.

Vì chỉ có một mật khẩu đúng nên n(C) = 1.

Vậy xác suất của biến cố C là: PC=nCnΩ=1A106.

Do đó ta chọn phương án A.

Lời giải

Không gian mẫu của trò chơi gieo một xúc xắc hai lần liên tiếp là tập hợp:

Ω = {(i; j) | i; j = 1; 2; 3; 4; 5; 6}.

Do đó n(Ω) = 36.

Gọi E là biến cố “Tích số chấm trong hai lần gieo là số chẵn”.

Các kết quả thuận lợi cho biến cố E là: (1; 2), (1; 4), (1; 6), (2; 1), (2; 2), (2; 3), (2; 4), (2; 5), (2; 6), (3; 2), (3; 4), (3; 6), (4; 1), (4; 2), (4; 3), (4; 4), (4; 5), (4; 6), (5; 2), (5; 4), (5; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5), (6; 6).

Vì thế, n(E) = 27.

Vậy xác suất của biến cố E là: PE=nEnΩ=2736=34.

Do đó ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP