Câu hỏi:
13/07/2024 11,650
Có 3 khách hàng (không quen biết nhau) cùng đến một cửa hàng có 5 quầy phục vụ khác nhau. Tính xác suất để có 2 khách hàng cùng vào một quầy và khách hàng còn lại vào một quầy khác.
Có 3 khách hàng (không quen biết nhau) cùng đến một cửa hàng có 5 quầy phục vụ khác nhau. Tính xác suất để có 2 khách hàng cùng vào một quầy và khách hàng còn lại vào một quầy khác.
Câu hỏi trong đề: Giải SBT Toán 10 CD Bài tập cuối chương 6 có đáp án !!
Quảng cáo
Trả lời:
Mỗi khách hàng có 5 cách chọn quầy nên số phần tử của không gian mẫu là:
n(Ω) = 5.5.5 = 53 = 125.
Gọi A là biến cố “2 khách hàng cùng vào một quầy và khách hàng còn lại vào một quầy khác”.
Số cách chọn 2 khách hàng trong 3 khách hàng là = 3.
Số cách chọn quầy cho 2 khách hàng đó là 5 cách chọn.
Vì khách hàng còn lại vào 1 quầy khác nên có 4 cách chọn quầy cho khách hàng còn lại.
Suy ra số phần tử của biến cố A là: n(A) = 3.5.4 = 60.
Vậy xác suất của biến cố A là: .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Sáu chữ số của mật khẩu thuộc tập hợp {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.
Mỗi cách bấm sáu chữ số đó cho ta một chỉnh hợp chập 6 của tập hợp 10 phần tử.
Vì vậy không gian mẫu Ω gồm các chỉnh hợp chập 6 của tập hợp 10 phần tử và n(Ω) = .
Gọi C là biến cố “Bác Ngân bấm đúng mật khẩu của chiếc điện thoại cũ đó trong một lần”.
Vì chỉ có một mật khẩu đúng nên n(C) = 1.
Vậy xác suất của biến cố C là: .
Do đó ta chọn phương án A.
Lời giải
Không gian mẫu của trò chơi gieo một xúc xắc hai lần liên tiếp là tập hợp:
Ω = {(i; j) | i; j = 1; 2; 3; 4; 5; 6}.
Do đó n(Ω) = 36.
Gọi E là biến cố “Tích số chấm trong hai lần gieo là số chẵn”.
Các kết quả thuận lợi cho biến cố E là: (1; 2), (1; 4), (1; 6), (2; 1), (2; 2), (2; 3), (2; 4), (2; 5), (2; 6), (3; 2), (3; 4), (3; 6), (4; 1), (4; 2), (4; 3), (4; 4), (4; 5), (4; 6), (5; 2), (5; 4), (5; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5), (6; 6).
Vì thế, n(E) = 27.
Vậy xác suất của biến cố E là: .
Do đó ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.