Bài tập Xác suất của biến cố trong một số trò chơi đơn giản có đáp án
34 người thi tuần này 4.6 806 lượt thi 15 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Sau bài học này, ta sẽ giải quyết được bài toán khởi động như sau:
Tung một đồng xu hai lần liên tiếp, không gian mẫu trong trò chơi này là tập hợp Ω = {SS; SN; NS; NN} nên n(Ω) = 4.
Gọi biến cố A: “Có ít nhất một lần xuất hiện mặt ngửa”.
Các kết quả thuận lợi cho biến cố A là: SN, NN, NS, tức là A = {SN; NN; NS}, vì thế n(A) = 3.
Vậy xác xuất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{3}{4}\).
Lời giải
Hướng dẫn giải
Tung 1 đồng xu 1 lần, các kết quả xảy ra có thể là xuất hiện mặt sấp (S) hoặc mặt ngửa (N).
Tung 1 đồng xu hai lần, các kết quả xảy ra có thể là: SS; SN; NS; NN.
Vậy Ω = {SS; SN; NS; NN}.
Lời giải
Hướng dẫn giải
Kết quả của hai lần tung giống nhau, có nghĩa là cả hai lần đều ra mặt sấp hoặc cả hai lần đều ra mặt ngửa.
Sự kiện đã nêu bao gồm các kết quả SS; NN trong tập hợp Ω.
Vậy tập hợp A các kết quả có thể xảy ra đối với sự kiện trên là: A = {SS; NN}.
Lời giải
Hướng dẫn giải
Ta có: Ω = {SS; SN; NS; NN} nên số phần tử của tập hợp Ω là 4.
A = {SS; NN} nên số phần tử của tập hợp A là 2.
Vậy tỉ số giữa số phần tử của tập hợp A và số phần tử của của tập hợp Ω là \(\frac{2}{4} = \frac{1}{2}\).
Lời giải
Hướng dẫn giải
Không gian mẫu trong trò chơi trên là tập hợp Ω = {SS; SN; NS; NN} nên n(Ω) = 4.
Gọi biến cố A: “Có ít nhất một lần xuất hiện mặt sấp”.
Các kết quả thuận lợi cho biến cố A là: SN, SS, NS, tức là A = {SN; SS; NS}, vì thế n(A) = 3.
Vậy xác xuất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{3}{4}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
161 Đánh giá
50%
40%
0%
0%
0%