Câu hỏi:

04/07/2022 870

Gieo một xúc xắc hai lần liên tiếp. Xét biến cố “Số chấm trong hai lần gieo đều là số nguyên tố”. Tính xác suất của biến cố đó.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Không gian mẫu trong trò chơi trên là tập hợp

Ω = {(i; j) | i, j = 1, 2, 3, 4, 5, 6},

trong đó (i; j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”.

Vậy n(Ω) = 36.

Gọi biến cố A: “Số chấm trong hai lần gieo đều là số nguyên tố”.

Các kết quả thuận lợi cho biến cố A là: (2; 2); (2; 3); (2; 5); (3; 2); (3; 3); (3; 5); (5; 2); (5; 3); (5; 5), tức là A = {(2; 2); (2; 3); (2; 5); (3; 2); (3; 3); (3; 5); (5; 2); (5; 3); (5; 5)}. Do đó, n(A) = 9.

Vậy xác xuất của biến cố A là: P(A) = \(\frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{9}{{36}} = \frac{1}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

“Mặt 1 chấm xuất hiện ít nhất một lần”.

Xem đáp án » 13/07/2024 2,667

Câu 2:

Gieo một xúc xắc hai lần liên tiếp. Tính xác suất của mỗi biến cố sau: 

“Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”;

Xem đáp án » 11/07/2024 2,392

Câu 3:

Gieo một xúc xắc hai lần liên tiếp. Phát biểu mỗi biến cố sau dưới dạng mệnh đề nêu sự kiện:

A = {(6 ; 1); (6 ; 2); (6 ; 3); (6 ; 4); (6 ; 5); (6 ; 6)};

B = {(1 ; 6); (2 ; 5); (3 ; 4); (4 ; 3); (5 ; 2); (6 ; 1)};

C = {(1 ; 1); (2 ; 2); (3 ; 3); (4 ; 4); (5 ; 5); (6; 6)}.

Xem đáp án » 04/07/2022 1,830

Câu 4:

Tung một đồng xu ba lần liên tiếp.

Viết tập hợp Ω là không gian mẫu trong trò chơi trên.

Xem đáp án » 04/07/2022 1,548

Câu 5:

Tung một đồng xu hai lần liên tiếp. Xét biến cố “Có ít nhất một lần xuất hiện mặt sấp”. Tính xác suất của biến cố nói trên.

Xem đáp án » 04/07/2022 972

Câu 6:

Xác định mỗi biến cố:

A: “Lần đầu xuất hiện mặt ngửa”;

B: “Mặt ngửa xảy ra đúng một lần”.

Xem đáp án » 11/07/2024 889

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn