Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Gọi biến cố B: “Mặt 1 chấm xuất hiện ít nhất một lần”.

Các kết quả thuận lợi cho biến cố B là: (1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (6; 1); (5; 1); (4; 1); (3; 1); (2; 1).

Hay B = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (6; 1); (5; 1); (4; 1); (3; 1); (2; 1)}. Vì thế n(B) = 11.

Vậy xác xuất của biến cố B là: \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{11}}{{36}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Không gian mẫu trong trò chơi trên là tập hợp

Ω = {(i; j) | i, j = 1, 2, 3, 4, 5, 6},

trong đó (i; j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”.

Vậy n(Ω) = 36.

Gọi biến cố A: “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”.

(Không bé hơn 10, có nghĩa là lớn hơn hoặc bằng 10).

Các kết quả thuận lợi cho biến cố A là: (4; 6); (5; 5); (5; 6); (6; 5); (6; 4); (6; 6).

Hay A = {(4; 6); (5; 5); (5; 6); (6; 5); (6; 4); (6; 6)}.

Vì thế n(A) = 6.

Vậy xác xuất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{36}} = \frac{1}{6}.\)

Lời giải

Hướng dẫn giải

+ Ta thấy ở biến cố A, các kết quả đều có lần đầu xuất hiện mặt 6 chấm, lần hai xuất hiện các mặt lần lượt từ 1 chấm đến 6 chấm. Do đó, ta phát biểu biến cố A như sau:

Biến cố A: “Lần đầu xuất hiện mặt 6 chấm khi gieo xúc xắc”.

+ Ta có: 1 + 6 = 2 + 5 = 3 + 4 = 4 + 3 = 5 + 2 = 6 + 1 = 7, tổng số chấm trong hai lần gieo là 7. Do đó, ta phát biểu biến cố B như sau:

Biến cố B: “Tổng số chấm trong hai lần gieo bằng 7”.

+ Ta thấy các kết quả ở hai lần gieo là giống như nhau. Do đó, ta phát biểu biến cố C như sau:

Biến cố C: “Kết quả của hai lần gieo như nhau”.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP