Bài tập Tích vô hướng của hai vectơ có đáp án
55 người thi tuần này 4.6 1.1 K lượt thi 13 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
Đề kiểm tra Tích của một vecto với một số (có lời giải) - Đề 1
Đề kiểm tra Tổng và hiệu của hai vectơ (có lời giải) - Đề 1
Đề kiểm tra Tích vô hướng của hai vectơ (có lời giải) - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Đề kiểm tra Bài tập cuối chương IV (có lời giải) - Đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Giá trị của biểu thức là tích vô hướng của hai vectơ và .
Lời giải
Ta có tam giác ABC vuông ở A nên
.
Lại có: tan B = ⇒ AC = AB . tanB = 3 . tan 30° = .
Và sin B = ⇒ BC = .
Ta có: = = .
= = = 6 . cos 60° = 3.
Lời giải
a) Tam giác ABC đều nên và AB = BC = AC = a.
Lại có: .
Ta có:
.
Vậy .
b) Do AH là đường cao của tam giác ABC nên AH ⊥ BC.
Do đó: nên .
Lời giải
+ Ta có:
(bình phương vô hướng của vectơ )
(áp dụng tính chất giao hoán)
Vậy .
+ Ta có:
(bình phương vô hướng của vectơ )
(áp dụng tính chất giao hoán)
Vậy .
+ Ta có:
(áp dụng tính chất giao hoán)
.
Vậy .
Lời giải
+ Ta chứng minh định lí thuận:
Có tam giác ABC vuông ở A, cần chứng minh BC2 = AB2 + AC2.
Tam giác ABC vuông tại A nên .
Ta có:
Suy ra: BC2 = AC2 + AB2 – 2 . AC . AB . cos
= AB2 + AC2 – 2 . AC . AB . cosA
= AB2 + AC2 – 2 . AC . AB . cos 90°
= AB2 + AC2 – 2 . AC . AB . 0
= AB2 + AC2.
Vậy BC2 = AB2 + AC2.
+ Ta chứng minh định lí đảo:
Cho tam giác ABC có BC2 = AB2 + AC2 thì tam giác ABC vuông tại A.
Ta có:
Suy ra: BC2 = AC2 + AB2 – 2 . AC . AB . cos (*)
Mà theo giả thiết ta có: BC2 = AB2 + AC2 nên thay vào (*) ta được:
BC2 = BC2 – 2 . AC . AB . cos
Suy ra: 2 . AC . AB . cos = 0
hay
Do đó: .
Vậy tam giác ABC vuông tại A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.