Câu hỏi:

19/10/2022 3,928

Số nghiệm của phương trình 2x4=x23x là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Bình phương hai vế của phương trình đã cho, ta được:

2x – 4 = x2 – 3x

x2 – 5x + 4 = 0

x = 4 hoặc x = 1.

Với x = 4, ta có 2.44=423.4 (đúng)

Với x = 1, ta có 2.14=123.1 (sai)

Vì vậy khi thay các giá trị x = 4 và x = 1 vào phương trình đã cho, ta thấy chỉ có x = 4 thỏa mãn.

Vậy phương trình đã cho có nghiệm là x = 4.

Ta chọn phương án D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Giá trị x nào sau đây là nghiệm của phương trình 2x2+3x5=x+1?

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Bình phương hai vế của phương trình đã cho, ta được:

2x2 + 3x – 5 = (x + 1)2

2x2 + 3x – 5 = x2 + 2x + 1

x2 + x – 6 = 0

x = 2 hoặc x = –3.

Với x = 2, ta có 2.22+3.25=2+1 (đúng)

Với x = –3, ta có 232+3.35=3+1 (sai)

Vì vậy khi thay lần lượt các giá trị x = 2 và x = –3 vào phương trình đã cho, ta thấy chỉ có x = 2 thỏa mãn.

Vậy nghiệm của phương trình đã cho là x = 2.

Ta chọn phương án B.

Câu 2

Cho phương trình 3x210x448+x=0. Tổng các nghiệm của phương trình trên là:

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có 3x210x448+x=0

3x210x44=8x.

Bình phương hai vế của phương trình trên, ta được:

3x2 – 10x – 44 = (8 – x)2

3x2 – 10x – 44 = 64 – 16x + x2

2x2 + 6x – 108 = 0

x = 6 hoặc x = –9.

Với x = 6, ta có 3.6210.644=86 (đúng)

Với x = –9, ta có 3.9210.944=89 (đúng)

Vì vậy khi thay lần lượt các giá trị x = 6 và x = –9 vào phương trình đã cho, ta thấy cả x = 6 và x = –9 đều thỏa mãn.

Vậy phương trình đã cho có nghiệm là x = 6 x = –9.

Tổng hai nghiệm là: 6 + (–9) = –3.

Ta chọn phương án C.

Câu 3

Phương trình nào sau đây không thể quy về phương trình bậc hai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho phương trình x+5+2x2=6. Khẳng định nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho phương trình x2+3=2x+6. Chọn khẳng định đúng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Tập nghiệm của phương trình x32x=4x2+12x+9 là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay