Câu hỏi:

19/10/2022 2,163

Có bao nhiêu số tự nhiên n thỏa mãn 14.P3.Cn1n3<An+14?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Điều kiện: n ≥ 3 và n ℕ*.

Ta có 14.P3.Cn1n3<An+14

14.3!.n1!n3!n1n+3!<n+1!n+14!

14.3.2.1.n1!n3!.2!<n+1!n3!

84.n1.n2.n3!n3!.2<n+1.n.n1.n2.n3!n3!

42.(n – 1)(n – 2) < (n + 1).n.(n – 1)(n – 2)

42 < (n + 1).n      (do (n – 1)(n – 2) ≠ 0, với n ≥ 3 và n ℕ*)

n2 + n – 42 > 0

n < –7 hoặc n > 6.

So với điều kiện n ≥ 3 và n ℕ*, ta nhận n > 6.

Vậy có vô số số tự nhiên n thỏa mãn yêu cầu bài toán.

Do đó ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Theo công thức nhị thức Newton, ta có:

1+x5

=C50.15+C51.14.x+C52.13.x2+C53.12.x3+C54.1.x4+C55.x5

=C50+C51.x+C52.x2+C53.x3+C54.x4+C55.x5

Cho x = 3, ta có:

1+35=C50+C51.3+C52.32+C53.33+C54.34+C55.35.

Suy ra S=C50+3C51+32C52+33C53+34C54+35C55=45.

Vậy ta chọn phương án D.

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có 253 125 000 = 23.34.58.

Do đó mỗi ước số tự nhiên của số 253 125 000 đều có dạng 2m.3n.5p, trong đó 0 ≤ m ≤ 3, 0 ≤ n ≤ 4, 0 ≤ p ≤ 8 và m, n, p ℕ.

Khi đó:

m có 4 cách chọn;

n có 5 cách chọn;

p có 9 cách chọn.

Theo quy tắc nhân, ta có tất cả 4.5.9 = 180 ước số tự nhiên.

Vậy ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP