Câu hỏi:

01/11/2022 605

Cho đồ thị hàm số C:y=a.x2+bx+ccó đỉnh I1;2 . Biết giá trị nhỏ nhất của biểu thức P=a2a+6b2bc+3b4c3ba3c+3b+2 là M khi hàm số có pt: y=a1x2+b1x+c1. Tính Q=M2+a12+b1+c13

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: xI=b2a=1ab+c=2b=2ac=2+a

P=a.14a4a2+7a42+a32aa9a+6+2=6a24a249a2+6a+2=236839a2+6a+2

* Pmin=703  tại a=13;b=23;c=53.

* Hàm số có pt: y=x232x3+53 và Pmin=52027

Chọn đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi O là trung điểm của AB, K là điểm thuộc đoạn thẳng OA sao cho OK=2m .

Chọn hệ tọa độ như hình vẽ. Khi đó phương trình của đường cong parabol có dạng y=ax2+c.

Theo giả thiết ta có parabol đi qua (-2,1,2), ( -3,0)nên ta có: 

Một chiếc cổng như hình vẽ, trong đó CD=6m , AD=4m , phía trên cổng có dạng hình parabol (ảnh 2)

.

Vậy đỉnh Icủa parabol (theo mép dưới của cổng) cách mặt đất tối thiểu là 6,16m

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP