Câu hỏi:

02/11/2022 418

Trong khi vẽ hình tròn, bạn Lan vô tình đã vẽ thành một hình Elip (nét gạch đứt) như hình vẽ.

Trong khi vẽ hình tròn, bạn Lan vô tình đã vẽ thành một hình Elip (nét gạch đứt) như hình vẽ. (ảnh 1)

Biết bạn Lan đo được tiêu cự của Elip đó là bằng 16 cm và đường tròn ban đầu định vẽ có bán kính là 10 cm. Phương trình chính tắc của Elip đó là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Ta thấy đường kính đường tròn chính bằng trục lớn của Elip.

Nên 2a = 2R = 20 (cm), suy ra a = 10 (cm).

Ta có tiêu cự của Elip là 16 cm nên 2c = 16, suy ra c = 8 (cm).

Khi đó b2 = c2 – a2 = 102 – 82 = 36

Phương trình chính tắc của Elip là: x2100+y236=1.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Một cổng của một trường đại học hình Parabol cao 20 m và bề rộng của cổng tại (ảnh 2)

Chọn hệ trục tọa độ Oxy như hình vẽ.

Gọi O là đỉnh cổng, A là chân cổng và C, D lần lượt là hai bên trái, phải chân cổng.

Theo bài ra ta có: OA = 20 m, CD = 20 m.

Gọi phương trình Parabol của cổng là y2 =2px.

Ta có: AC = AD = CD : 2 = 10 (m)

Do đó điểm D có tung độ là 10.

OA = 20 nên điểm D có hoành độ là 20.

Thay D(20; 10) vào phương trình (P) ta có: 102=2p.20p=52

Suy ra y2 = 5x.

Thay tọa độ điểm E cách đỉnh 4 m (x = 4) vào (P) ta có:

y2 = 5x = 5 . 4 = 20 y=20=25m

Vậy bề rộng của cổng tại chỗ cách đỉnh 4 m là 25m.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Tọa độ giao điểm của d và Elip là nghiệm của hệ phương trình:

x2y+m=0x24+y21=1x=2ym2ym24+y21=1

x=2ym4y24my+m2+4y2=4x=2ym8y24my+m24=0  *

Hai đồ thị có hai giao điểm phân biệt khi và chỉ khi (*) có hai nghiệm phân biệt y.

Δ*'>02m28.m24>0

– 4m2 + 32 > 0

m2 < 8 22<m<22.

Vậy ta chọn phương án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay